D. Mendanha MSc , S. Gimondi PhD , B.M. Costa PhD , H. Ferreira PhD , N.M. Neves PhD
{"title":"微流体衍生的二十二碳六烯酸脂质体用于胶质母细胞瘤治疗","authors":"D. Mendanha MSc , S. Gimondi PhD , B.M. Costa PhD , H. Ferreira PhD , N.M. Neves PhD","doi":"10.1016/j.nano.2023.102704","DOIUrl":null,"url":null,"abstract":"<div><p>Glioblastoma (GBM) is the most prevalent malignant primary brain tumor and currently lacks an effective treatment. In this study, we utilized a microfluidic system to synthesize docosahexaenoic acid (DHA) liposomes for GBM therapy. DHA is an omega-3 (ω3) polyunsaturated fatty acid commonly found in human dietary consumption that has demonstrated potential in mitigating cancer development. The microfluidic device employed allowed for precise fine-tuning of the physicochemical properties of liposomes by adjusting the flow rate ratios, flow rates, and lipid concentrations. Three distinct-sized liposomes, ranging from 80 nm and 130 nm, were successfully internalized by GBM cells, and demonstrated the ability to reduce the viability of these cells. Furthermore, DHA liposomes proved significantly more efficient in triggering apoptotic pathways, through caspase-3-dependent mechanisms, in comparison to free DHA. Thus, the nanomedicine platform established in this study presents new opportunities in the development of liposome formulations incorporating ω3 fatty acids for cancer therapy.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"53 ","pages":"Article 102704"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy\",\"authors\":\"D. Mendanha MSc , S. Gimondi PhD , B.M. Costa PhD , H. Ferreira PhD , N.M. Neves PhD\",\"doi\":\"10.1016/j.nano.2023.102704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glioblastoma (GBM) is the most prevalent malignant primary brain tumor and currently lacks an effective treatment. In this study, we utilized a microfluidic system to synthesize docosahexaenoic acid (DHA) liposomes for GBM therapy. DHA is an omega-3 (ω3) polyunsaturated fatty acid commonly found in human dietary consumption that has demonstrated potential in mitigating cancer development. The microfluidic device employed allowed for precise fine-tuning of the physicochemical properties of liposomes by adjusting the flow rate ratios, flow rates, and lipid concentrations. Three distinct-sized liposomes, ranging from 80 nm and 130 nm, were successfully internalized by GBM cells, and demonstrated the ability to reduce the viability of these cells. Furthermore, DHA liposomes proved significantly more efficient in triggering apoptotic pathways, through caspase-3-dependent mechanisms, in comparison to free DHA. Thus, the nanomedicine platform established in this study presents new opportunities in the development of liposome formulations incorporating ω3 fatty acids for cancer therapy.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"53 \",\"pages\":\"Article 102704\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000552\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000552","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor and currently lacks an effective treatment. In this study, we utilized a microfluidic system to synthesize docosahexaenoic acid (DHA) liposomes for GBM therapy. DHA is an omega-3 (ω3) polyunsaturated fatty acid commonly found in human dietary consumption that has demonstrated potential in mitigating cancer development. The microfluidic device employed allowed for precise fine-tuning of the physicochemical properties of liposomes by adjusting the flow rate ratios, flow rates, and lipid concentrations. Three distinct-sized liposomes, ranging from 80 nm and 130 nm, were successfully internalized by GBM cells, and demonstrated the ability to reduce the viability of these cells. Furthermore, DHA liposomes proved significantly more efficient in triggering apoptotic pathways, through caspase-3-dependent mechanisms, in comparison to free DHA. Thus, the nanomedicine platform established in this study presents new opportunities in the development of liposome formulations incorporating ω3 fatty acids for cancer therapy.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.