{"title":"小管肾小球反馈与肾小球滤过率的控制。","authors":"Volker Vallon","doi":"10.1152/nips.01442.2003","DOIUrl":null,"url":null,"abstract":"<p><p>In every nephron the glomerular filtration rate is adapted to changes in the salt concentration of early distal tubular fluid through the mechanism of tubuloglomerular feedback. Recent studies indicate that adenosine and possibly ATP mediate this mechanism and demonstrate its role in glomerular hemodynamic alterations in the early diabetic kidney.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"169-74"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01442.2003","citationCount":"121","resultStr":"{\"title\":\"Tubuloglomerular feedback and the control of glomerular filtration rate.\",\"authors\":\"Volker Vallon\",\"doi\":\"10.1152/nips.01442.2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In every nephron the glomerular filtration rate is adapted to changes in the salt concentration of early distal tubular fluid through the mechanism of tubuloglomerular feedback. Recent studies indicate that adenosine and possibly ATP mediate this mechanism and demonstrate its role in glomerular hemodynamic alterations in the early diabetic kidney.</p>\",\"PeriodicalId\":82140,\"journal\":{\"name\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"volume\":\"18 \",\"pages\":\"169-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/nips.01442.2003\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/nips.01442.2003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/nips.01442.2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tubuloglomerular feedback and the control of glomerular filtration rate.
In every nephron the glomerular filtration rate is adapted to changes in the salt concentration of early distal tubular fluid through the mechanism of tubuloglomerular feedback. Recent studies indicate that adenosine and possibly ATP mediate this mechanism and demonstrate its role in glomerular hemodynamic alterations in the early diabetic kidney.