{"title":"细胞粘附分子:记忆巩固的关键角色?","authors":"Hans Welzl, Oliver Stork","doi":"10.1152/nips.01422.2002","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental evidence implies that L1 and neural cell adhesion molecule (NCAM) are involved in long-term memory formation. Changes in their expression and glycosylation appear to modify the synaptic strength underlying memory consolidation. Interference with L1 and NCAM function in a variety of learning tasks in different species severely attenuates memory consolidation, indicating their involvement in an evolutionary conserved mechanism of neural plasticity.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"147-50"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01422.2002","citationCount":"60","resultStr":"{\"title\":\"Cell adhesion molecules: key players in memory consolidation?\",\"authors\":\"Hans Welzl, Oliver Stork\",\"doi\":\"10.1152/nips.01422.2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental evidence implies that L1 and neural cell adhesion molecule (NCAM) are involved in long-term memory formation. Changes in their expression and glycosylation appear to modify the synaptic strength underlying memory consolidation. Interference with L1 and NCAM function in a variety of learning tasks in different species severely attenuates memory consolidation, indicating their involvement in an evolutionary conserved mechanism of neural plasticity.</p>\",\"PeriodicalId\":82140,\"journal\":{\"name\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"volume\":\"18 \",\"pages\":\"147-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/nips.01422.2002\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/nips.01422.2002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/nips.01422.2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell adhesion molecules: key players in memory consolidation?
Experimental evidence implies that L1 and neural cell adhesion molecule (NCAM) are involved in long-term memory formation. Changes in their expression and glycosylation appear to modify the synaptic strength underlying memory consolidation. Interference with L1 and NCAM function in a variety of learning tasks in different species severely attenuates memory consolidation, indicating their involvement in an evolutionary conserved mechanism of neural plasticity.