Zhongbiao Wang, Pulipaka J Rao, Manuel R Castresana, Walter H Newman
{"title":"从人体大隐静脉中分离形态独特的平滑肌细胞克隆的方法。","authors":"Zhongbiao Wang, Pulipaka J Rao, Manuel R Castresana, Walter H Newman","doi":"10.1023/a:1024461501028","DOIUrl":null,"url":null,"abstract":"<p><p>The monoclonal theory of atherosclerosis postulates that a certain subpopulation of vascular smooth muscle cells (VSMC) is selectively expanded in response to pathological stimuli thereby contributing to the formation of atherosclerotic plaques. VSMC cloning experiments will be important in characterizing the phenotypic composition of VSMC in atherosclerotic plaques. However, the difficulty in cloning human VSMC is well recognized. Here a technique is described that produced multiple clones from human saphenous vein. The clones could be divided into two categories based on their distinctly different morphology: (1) spindle-shaped; and, (2) epithelioid-shaped. Each clone expressed smooth muscle-a-actin and calponin, two smooth muscle-specific differentiation markers. The clonal study presented here reports for the first time that phenotypically heterogeneous smooth muscle cells coexist within human saphenous veins.</p>","PeriodicalId":80082,"journal":{"name":"Methods in cell science : an official journal of the Society for In Vitro Biology","volume":"24 4","pages":"131-7"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1024461501028","citationCount":"3","resultStr":"{\"title\":\"A method to isolate morphologically distinct clones of smooth muscle cells from human saphenous vein.\",\"authors\":\"Zhongbiao Wang, Pulipaka J Rao, Manuel R Castresana, Walter H Newman\",\"doi\":\"10.1023/a:1024461501028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The monoclonal theory of atherosclerosis postulates that a certain subpopulation of vascular smooth muscle cells (VSMC) is selectively expanded in response to pathological stimuli thereby contributing to the formation of atherosclerotic plaques. VSMC cloning experiments will be important in characterizing the phenotypic composition of VSMC in atherosclerotic plaques. However, the difficulty in cloning human VSMC is well recognized. Here a technique is described that produced multiple clones from human saphenous vein. The clones could be divided into two categories based on their distinctly different morphology: (1) spindle-shaped; and, (2) epithelioid-shaped. Each clone expressed smooth muscle-a-actin and calponin, two smooth muscle-specific differentiation markers. The clonal study presented here reports for the first time that phenotypically heterogeneous smooth muscle cells coexist within human saphenous veins.</p>\",\"PeriodicalId\":80082,\"journal\":{\"name\":\"Methods in cell science : an official journal of the Society for In Vitro Biology\",\"volume\":\"24 4\",\"pages\":\"131-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1023/a:1024461501028\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell science : an official journal of the Society for In Vitro Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1023/a:1024461501028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell science : an official journal of the Society for In Vitro Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/a:1024461501028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method to isolate morphologically distinct clones of smooth muscle cells from human saphenous vein.
The monoclonal theory of atherosclerosis postulates that a certain subpopulation of vascular smooth muscle cells (VSMC) is selectively expanded in response to pathological stimuli thereby contributing to the formation of atherosclerotic plaques. VSMC cloning experiments will be important in characterizing the phenotypic composition of VSMC in atherosclerotic plaques. However, the difficulty in cloning human VSMC is well recognized. Here a technique is described that produced multiple clones from human saphenous vein. The clones could be divided into two categories based on their distinctly different morphology: (1) spindle-shaped; and, (2) epithelioid-shaped. Each clone expressed smooth muscle-a-actin and calponin, two smooth muscle-specific differentiation markers. The clonal study presented here reports for the first time that phenotypically heterogeneous smooth muscle cells coexist within human saphenous veins.