{"title":"一氧化氮介导的大鼠多形核白细胞自由基生成反应的调节:一项流式细胞术研究。","authors":"Madhu Dikshit, Prashant Sharma","doi":"10.1023/a:1024197915723","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) synthesis and free radical generation from polymorphonuclear leukocytes (PMNs) play an important role in several pathological conditions. It is therefore important to understand the regulatory mechanisms of free radical generation from PMNs. Flowcytometry can be used to assess generation of reactive oxygen and nitrogen species from PMNs by using fluorescent probes. In the present study regulation of NO synthesis in the control and lipopolysaccharide (LPS) treated rat PMNs has been investigated. Free radical generation was assessed by flow cytometry using a dye, 2'7'-dichlorodihydrofluorescein diacetate (DCFDA), dihydrorhodamine-123 (DHR) and 4,5-diaminofluorescein diacetate (DAF). Superoxide dismutase (SOD), and catalase significantly attenuated the arachidonic acid (AA, 1 x 10(-6) M) induced free radical generation, while 4-aminobenzoicacid hydrazide (ABH), myeloperoxidase (MPO) inhibitor had no significant effect. Intracellular and extracellular calcium levels also modulated FR generation. AA induced free radical generation from PMNs was also enhanced significantly after LPS treatment. NO synthase (NOS) inhibitors, aminoguanidine (AG) and 7-nitroindazole (NI) inhibited arachidonic acid induced free radical generation from LPS treated PMNs, while in control PMNs NOS inhibition had no effect. Augmentation of free radical generation from rat PMNs following LPS treatment seems to be regulated by NO.</p>","PeriodicalId":80082,"journal":{"name":"Methods in cell science : an official journal of the Society for In Vitro Biology","volume":"24 1-3","pages":"69-76"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1024197915723","citationCount":"0","resultStr":"{\"title\":\"Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flowcytometric study.\",\"authors\":\"Madhu Dikshit, Prashant Sharma\",\"doi\":\"10.1023/a:1024197915723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitric oxide (NO) synthesis and free radical generation from polymorphonuclear leukocytes (PMNs) play an important role in several pathological conditions. It is therefore important to understand the regulatory mechanisms of free radical generation from PMNs. Flowcytometry can be used to assess generation of reactive oxygen and nitrogen species from PMNs by using fluorescent probes. In the present study regulation of NO synthesis in the control and lipopolysaccharide (LPS) treated rat PMNs has been investigated. Free radical generation was assessed by flow cytometry using a dye, 2'7'-dichlorodihydrofluorescein diacetate (DCFDA), dihydrorhodamine-123 (DHR) and 4,5-diaminofluorescein diacetate (DAF). Superoxide dismutase (SOD), and catalase significantly attenuated the arachidonic acid (AA, 1 x 10(-6) M) induced free radical generation, while 4-aminobenzoicacid hydrazide (ABH), myeloperoxidase (MPO) inhibitor had no significant effect. Intracellular and extracellular calcium levels also modulated FR generation. AA induced free radical generation from PMNs was also enhanced significantly after LPS treatment. NO synthase (NOS) inhibitors, aminoguanidine (AG) and 7-nitroindazole (NI) inhibited arachidonic acid induced free radical generation from LPS treated PMNs, while in control PMNs NOS inhibition had no effect. Augmentation of free radical generation from rat PMNs following LPS treatment seems to be regulated by NO.</p>\",\"PeriodicalId\":80082,\"journal\":{\"name\":\"Methods in cell science : an official journal of the Society for In Vitro Biology\",\"volume\":\"24 1-3\",\"pages\":\"69-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1023/a:1024197915723\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell science : an official journal of the Society for In Vitro Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1023/a:1024197915723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell science : an official journal of the Society for In Vitro Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/a:1024197915723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flowcytometric study.
Nitric oxide (NO) synthesis and free radical generation from polymorphonuclear leukocytes (PMNs) play an important role in several pathological conditions. It is therefore important to understand the regulatory mechanisms of free radical generation from PMNs. Flowcytometry can be used to assess generation of reactive oxygen and nitrogen species from PMNs by using fluorescent probes. In the present study regulation of NO synthesis in the control and lipopolysaccharide (LPS) treated rat PMNs has been investigated. Free radical generation was assessed by flow cytometry using a dye, 2'7'-dichlorodihydrofluorescein diacetate (DCFDA), dihydrorhodamine-123 (DHR) and 4,5-diaminofluorescein diacetate (DAF). Superoxide dismutase (SOD), and catalase significantly attenuated the arachidonic acid (AA, 1 x 10(-6) M) induced free radical generation, while 4-aminobenzoicacid hydrazide (ABH), myeloperoxidase (MPO) inhibitor had no significant effect. Intracellular and extracellular calcium levels also modulated FR generation. AA induced free radical generation from PMNs was also enhanced significantly after LPS treatment. NO synthase (NOS) inhibitors, aminoguanidine (AG) and 7-nitroindazole (NI) inhibited arachidonic acid induced free radical generation from LPS treated PMNs, while in control PMNs NOS inhibition had no effect. Augmentation of free radical generation from rat PMNs following LPS treatment seems to be regulated by NO.