Marianne Haag, Olga N Magada, Nico Claassen, Linde H Böhmer, Marlena C Kruger
{"title":"Omega-3脂肪酸调节参与十二指肠钙吸收的atp酶。","authors":"Marianne Haag, Olga N Magada, Nico Claassen, Linde H Böhmer, Marlena C Kruger","doi":"10.1016/s0952-3278(03)00067-x","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"68 6","pages":"423-9"},"PeriodicalIF":2.9000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00067-x","citationCount":"81","resultStr":"{\"title\":\"Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption.\",\"authors\":\"Marianne Haag, Olga N Magada, Nico Claassen, Linde H Böhmer, Marlena C Kruger\",\"doi\":\"10.1016/s0952-3278(03)00067-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.</p>\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":\"68 6\",\"pages\":\"423-9\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00067-x\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s0952-3278(03)00067-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00067-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 81
摘要
膳食中补充含有-3多不饱和脂肪酸的鱼油已被证明可以提高大鼠的骨密度和十二指肠钙的摄取。后一过程由膜atp酶支持。本实验旨在测试omega-3脂肪酸对大鼠十二指肠肠细胞基底外膜atp酶活性的影响。钙调素剥离膜中的ca - atp酶被二十二碳己酸(DHA) (10-30 μ g/ml)双相激活,而不被二十碳五烯酸(EPA)激活。这种作用被0.5微米calphostin(一种蛋白激酶C阻滞剂)部分阻断。DHA抑制Na, k - atp酶(-49%的基础活性,[DHA]=30微克/毫升,P
Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.