声波刺猬。

H S Heussler, M Suri
{"title":"声波刺猬。","authors":"H S Heussler, M Suri","doi":"10.1136/mp.56.3.129","DOIUrl":null,"url":null,"abstract":"segment polarity genes that regulate segmental and imaginal disc patterning in the fruit fly, Drosophila melanogaster. Unlike drosophila and other invertebrates, which only have a single hh gene, vertebrates have a family of genes that are homologous to the hh gene. Mammals have three genes with homology to the hh gene. These comprise Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). All hedgehog genes encode signalling molecules that are involved in short and long range patterning processes during embryogenesis. Like all hedgehog proteins Shh protein also undergoes molecular processing in the endoplasmic reticulum. This involves cleavage of its signal peptide, followed by autocatalytic cleavage of the hedgehog protein precursor into a 19 kDa N-terminal domain (Shh-N) and a 25 kDa C-terminal domain (Shh-C). The signalling activity of hedgehog proteins resides in Shh-N. Shh-C has intramolecular cholesterol transferase activity and is responsible for covalently attaching a cholesterol molecule to the C-terminal end of Shh-N. The addition of cholesterol plays an important role in spatially restricting the zone of activity of Shh-N by anchoring it to the cell membrane and restricting its diffusion from the site of secretion. It is believed that inborn errors of cholesterol synthesis such as Smith–Lemli–Opitz syndrome (microcephaly, growth and mental retardation, facial dysmorphism, syndactyly of the second and third toes, congenital heart disease, hypotonia, and genital abnormalities in males) can interfere with SHH signalling by interfering with its molecular processing, in particular with the cholesterol modification of Shh-N.","PeriodicalId":79512,"journal":{"name":"Molecular pathology : MP","volume":"56 3","pages":"129-31"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187306/pdf/mp56000129.pdf","citationCount":"4","resultStr":"{\"title\":\"Sonic hedgehog.\",\"authors\":\"H S Heussler, M Suri\",\"doi\":\"10.1136/mp.56.3.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"segment polarity genes that regulate segmental and imaginal disc patterning in the fruit fly, Drosophila melanogaster. Unlike drosophila and other invertebrates, which only have a single hh gene, vertebrates have a family of genes that are homologous to the hh gene. Mammals have three genes with homology to the hh gene. These comprise Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). All hedgehog genes encode signalling molecules that are involved in short and long range patterning processes during embryogenesis. Like all hedgehog proteins Shh protein also undergoes molecular processing in the endoplasmic reticulum. This involves cleavage of its signal peptide, followed by autocatalytic cleavage of the hedgehog protein precursor into a 19 kDa N-terminal domain (Shh-N) and a 25 kDa C-terminal domain (Shh-C). The signalling activity of hedgehog proteins resides in Shh-N. Shh-C has intramolecular cholesterol transferase activity and is responsible for covalently attaching a cholesterol molecule to the C-terminal end of Shh-N. The addition of cholesterol plays an important role in spatially restricting the zone of activity of Shh-N by anchoring it to the cell membrane and restricting its diffusion from the site of secretion. It is believed that inborn errors of cholesterol synthesis such as Smith–Lemli–Opitz syndrome (microcephaly, growth and mental retardation, facial dysmorphism, syndactyly of the second and third toes, congenital heart disease, hypotonia, and genital abnormalities in males) can interfere with SHH signalling by interfering with its molecular processing, in particular with the cholesterol modification of Shh-N.\",\"PeriodicalId\":79512,\"journal\":{\"name\":\"Molecular pathology : MP\",\"volume\":\"56 3\",\"pages\":\"129-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187306/pdf/mp56000129.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular pathology : MP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/mp.56.3.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular pathology : MP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/mp.56.3.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonic hedgehog.
segment polarity genes that regulate segmental and imaginal disc patterning in the fruit fly, Drosophila melanogaster. Unlike drosophila and other invertebrates, which only have a single hh gene, vertebrates have a family of genes that are homologous to the hh gene. Mammals have three genes with homology to the hh gene. These comprise Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). All hedgehog genes encode signalling molecules that are involved in short and long range patterning processes during embryogenesis. Like all hedgehog proteins Shh protein also undergoes molecular processing in the endoplasmic reticulum. This involves cleavage of its signal peptide, followed by autocatalytic cleavage of the hedgehog protein precursor into a 19 kDa N-terminal domain (Shh-N) and a 25 kDa C-terminal domain (Shh-C). The signalling activity of hedgehog proteins resides in Shh-N. Shh-C has intramolecular cholesterol transferase activity and is responsible for covalently attaching a cholesterol molecule to the C-terminal end of Shh-N. The addition of cholesterol plays an important role in spatially restricting the zone of activity of Shh-N by anchoring it to the cell membrane and restricting its diffusion from the site of secretion. It is believed that inborn errors of cholesterol synthesis such as Smith–Lemli–Opitz syndrome (microcephaly, growth and mental retardation, facial dysmorphism, syndactyly of the second and third toes, congenital heart disease, hypotonia, and genital abnormalities in males) can interfere with SHH signalling by interfering with its molecular processing, in particular with the cholesterol modification of Shh-N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信