{"title":"二十二碳五烯酸(22:5,n-3)抑制血管内皮生长因子诱导的内皮细胞成管活性。","authors":"Masako Tsuji, Se-itsu Murota, Ikuo Morita","doi":"10.1016/s0952-3278(03)00025-5","DOIUrl":null,"url":null,"abstract":"<p><p>It is generally accepted that n-3 polyunsaturated fatty acids have beneficial effects on vascular homeostasis. Among the several functions of endothelial cells, angiogenesis contributes to tumor growth, inflammation, and microangiopathy. We have already demonstrated that eicosapentaenoic acid (EPA, 20:5, n-3) suppressed angiogenesis. In this paper, we examined the effect of docosapentaenoic acid (DPA, 22:5, n-3), an elongated metabolite of EPA, on tube-forming activity in bovine aortic endothelial cells (BAE cells) incubated between type I collagen gels. The pretreatment of BAE cells with DPA suppressed tube-forming activity induced by vascular endothelial growth factor (VEGF). The effect of DPA was stronger than those of EPA and docosahexaenoic acid (22:6, n-3). The migrating activity of endothelial cells stimulated with VEGF was also suppressed by DPA pretreatment. The treatment of BAE cells with DPA caused the suppression of VEGF receptor-2 (VEGFR-2, the kinase insert domain-containing receptor, KDR) expression in both plastic dish and collagen gel cultures. These data indicate that DPA has a potent inhibitory effect on angiogenesis through the suppression of VEGFR-2 expression.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"68 5","pages":"337-42"},"PeriodicalIF":2.9000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00025-5","citationCount":"90","resultStr":"{\"title\":\"Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor.\",\"authors\":\"Masako Tsuji, Se-itsu Murota, Ikuo Morita\",\"doi\":\"10.1016/s0952-3278(03)00025-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is generally accepted that n-3 polyunsaturated fatty acids have beneficial effects on vascular homeostasis. Among the several functions of endothelial cells, angiogenesis contributes to tumor growth, inflammation, and microangiopathy. We have already demonstrated that eicosapentaenoic acid (EPA, 20:5, n-3) suppressed angiogenesis. In this paper, we examined the effect of docosapentaenoic acid (DPA, 22:5, n-3), an elongated metabolite of EPA, on tube-forming activity in bovine aortic endothelial cells (BAE cells) incubated between type I collagen gels. The pretreatment of BAE cells with DPA suppressed tube-forming activity induced by vascular endothelial growth factor (VEGF). The effect of DPA was stronger than those of EPA and docosahexaenoic acid (22:6, n-3). The migrating activity of endothelial cells stimulated with VEGF was also suppressed by DPA pretreatment. The treatment of BAE cells with DPA caused the suppression of VEGF receptor-2 (VEGFR-2, the kinase insert domain-containing receptor, KDR) expression in both plastic dish and collagen gel cultures. These data indicate that DPA has a potent inhibitory effect on angiogenesis through the suppression of VEGFR-2 expression.</p>\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":\"68 5\",\"pages\":\"337-42\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2003-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00025-5\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s0952-3278(03)00025-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00025-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor.
It is generally accepted that n-3 polyunsaturated fatty acids have beneficial effects on vascular homeostasis. Among the several functions of endothelial cells, angiogenesis contributes to tumor growth, inflammation, and microangiopathy. We have already demonstrated that eicosapentaenoic acid (EPA, 20:5, n-3) suppressed angiogenesis. In this paper, we examined the effect of docosapentaenoic acid (DPA, 22:5, n-3), an elongated metabolite of EPA, on tube-forming activity in bovine aortic endothelial cells (BAE cells) incubated between type I collagen gels. The pretreatment of BAE cells with DPA suppressed tube-forming activity induced by vascular endothelial growth factor (VEGF). The effect of DPA was stronger than those of EPA and docosahexaenoic acid (22:6, n-3). The migrating activity of endothelial cells stimulated with VEGF was also suppressed by DPA pretreatment. The treatment of BAE cells with DPA caused the suppression of VEGF receptor-2 (VEGFR-2, the kinase insert domain-containing receptor, KDR) expression in both plastic dish and collagen gel cultures. These data indicate that DPA has a potent inhibitory effect on angiogenesis through the suppression of VEGFR-2 expression.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.