{"title":"力、鱼和流体:水生运动的水动力机制。","authors":"George V Lauder, Eliot G Drucker","doi":"10.1152/nips.01398.2002","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how fishes generate external fluid force to swim steadily and maneuver has proven to be difficult because water does not provide a stable platform for force measurement. But new methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"17 ","pages":"235-40"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01398.2002","citationCount":"127","resultStr":"{\"title\":\"Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion.\",\"authors\":\"George V Lauder, Eliot G Drucker\",\"doi\":\"10.1152/nips.01398.2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how fishes generate external fluid force to swim steadily and maneuver has proven to be difficult because water does not provide a stable platform for force measurement. But new methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.</p>\",\"PeriodicalId\":82140,\"journal\":{\"name\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"volume\":\"17 \",\"pages\":\"235-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/nips.01398.2002\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/nips.01398.2002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/nips.01398.2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion.
Understanding how fishes generate external fluid force to swim steadily and maneuver has proven to be difficult because water does not provide a stable platform for force measurement. But new methods in experimental fluid mechanics provide insights into the physiological mechanisms of aquatic force generation and limits to locomotor performance.