柱层金属-有机骨架对二甲苯异构体的高效分离

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liping Yang, Hanbang Liu, Danhua Yuan, Jiacheng Xing, Yunpeng Xu*, Zhongmin Liu
{"title":"柱层金属-有机骨架对二甲苯异构体的高效分离","authors":"Liping Yang,&nbsp;Hanbang Liu,&nbsp;Danhua Yuan,&nbsp;Jiacheng Xing,&nbsp;Yunpeng Xu*,&nbsp;Zhongmin Liu","doi":"10.1021/acsami.1c10462","DOIUrl":null,"url":null,"abstract":"<p >The separation of xylene isomers is one of the most challenging issues in the chemical industry because of the similarity of their boiling points and kinetic diameters. This study focuses on the use of pillar-layer MOF-Co(aip)(bpy)<sub>0.5</sub> for adsorption and separation of xylene isomers. It was found that Co(aip)(bpy)<sub>0.5</sub> exhibited a significant <i>para</i>-selectivity in liquid-phase competitive adsorption of xylene isomers, and the competitive separation factors reached as high as 30 for <i>p</i>-xylene versus <i>m</i>-xylene and 16 for <i>p</i>-xylene versus <i>o</i>-xylene. Desorption experiments further confirmed the preferential adsorption of <i>p</i>-xylene on the adsorbent. Molecular simulations and calculations revealed that the order of interaction strengths for xylene molecules and the adsorbent framework was <i>p</i>-xylene ? <i>o</i>-xylene ≈ <i>m</i>-xylene, which illustrated the selective adsorption phenomena arising from the mechanism for microscopic interactions. This work broadens the application of pillar-layer MOF materials in the field of xylene isomer adsorption and separation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Efficient Separation of Xylene Isomers by a Pillar-Layer Metal–Organic Framework\",\"authors\":\"Liping Yang,&nbsp;Hanbang Liu,&nbsp;Danhua Yuan,&nbsp;Jiacheng Xing,&nbsp;Yunpeng Xu*,&nbsp;Zhongmin Liu\",\"doi\":\"10.1021/acsami.1c10462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The separation of xylene isomers is one of the most challenging issues in the chemical industry because of the similarity of their boiling points and kinetic diameters. This study focuses on the use of pillar-layer MOF-Co(aip)(bpy)<sub>0.5</sub> for adsorption and separation of xylene isomers. It was found that Co(aip)(bpy)<sub>0.5</sub> exhibited a significant <i>para</i>-selectivity in liquid-phase competitive adsorption of xylene isomers, and the competitive separation factors reached as high as 30 for <i>p</i>-xylene versus <i>m</i>-xylene and 16 for <i>p</i>-xylene versus <i>o</i>-xylene. Desorption experiments further confirmed the preferential adsorption of <i>p</i>-xylene on the adsorbent. Molecular simulations and calculations revealed that the order of interaction strengths for xylene molecules and the adsorbent framework was <i>p</i>-xylene ? <i>o</i>-xylene ≈ <i>m</i>-xylene, which illustrated the selective adsorption phenomena arising from the mechanism for microscopic interactions. This work broadens the application of pillar-layer MOF materials in the field of xylene isomer adsorption and separation.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.1c10462\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c10462","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

二甲苯异构体的分离是化学工业中最具挑战性的问题之一,因为它们的沸点和动力学直径相似。本文主要研究了柱层MOF-Co(aip)(bpy)0.5对二甲苯异构体的吸附和分离。结果表明,Co(aip)(bpy)0.5在液相竞争吸附中对二甲苯异构体具有明显的对选择性,对二甲苯与间二甲苯的竞争分离系数高达30,对二甲苯与邻二甲苯的竞争分离系数高达16。解吸实验进一步证实了对二甲苯在吸附剂上的优先吸附。分子模拟和计算表明,二甲苯分子与吸附剂框架的相互作用强度顺序为对二甲苯?邻二甲苯≈间二甲苯,这说明了微观相互作用机制产生的选择性吸附现象。本工作拓宽了柱层MOF材料在二甲苯异构体吸附分离领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Separation of Xylene Isomers by a Pillar-Layer Metal–Organic Framework

Efficient Separation of Xylene Isomers by a Pillar-Layer Metal–Organic Framework

The separation of xylene isomers is one of the most challenging issues in the chemical industry because of the similarity of their boiling points and kinetic diameters. This study focuses on the use of pillar-layer MOF-Co(aip)(bpy)0.5 for adsorption and separation of xylene isomers. It was found that Co(aip)(bpy)0.5 exhibited a significant para-selectivity in liquid-phase competitive adsorption of xylene isomers, and the competitive separation factors reached as high as 30 for p-xylene versus m-xylene and 16 for p-xylene versus o-xylene. Desorption experiments further confirmed the preferential adsorption of p-xylene on the adsorbent. Molecular simulations and calculations revealed that the order of interaction strengths for xylene molecules and the adsorbent framework was p-xylene ? o-xylene ≈ m-xylene, which illustrated the selective adsorption phenomena arising from the mechanism for microscopic interactions. This work broadens the application of pillar-layer MOF materials in the field of xylene isomer adsorption and separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信