{"title":"一氧化氮对心率的胆碱能控制是部位特异性的。","authors":"Neil Herring, Edward J F Danson, David J Paterson","doi":"10.1152/nips.01386.2002","DOIUrl":null,"url":null,"abstract":"<p><p>Parasympathetic control of heart rate involves the exocytotic release of acetylcholine and muscarinic receptor regulation of pacemaking currents. Endogenous nitric oxide can potentially regulate all of these processes; however, recent work suggests that the main functional role of nitric oxide lies in the modulation of acetylcholine release.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"17 ","pages":"202-6"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01386.2002","citationCount":"65","resultStr":"{\"title\":\"Cholinergic control of heart rate by nitric oxide is site specific.\",\"authors\":\"Neil Herring, Edward J F Danson, David J Paterson\",\"doi\":\"10.1152/nips.01386.2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parasympathetic control of heart rate involves the exocytotic release of acetylcholine and muscarinic receptor regulation of pacemaking currents. Endogenous nitric oxide can potentially regulate all of these processes; however, recent work suggests that the main functional role of nitric oxide lies in the modulation of acetylcholine release.</p>\",\"PeriodicalId\":82140,\"journal\":{\"name\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"volume\":\"17 \",\"pages\":\"202-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/nips.01386.2002\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/nips.01386.2002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/nips.01386.2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cholinergic control of heart rate by nitric oxide is site specific.
Parasympathetic control of heart rate involves the exocytotic release of acetylcholine and muscarinic receptor regulation of pacemaking currents. Endogenous nitric oxide can potentially regulate all of these processes; however, recent work suggests that the main functional role of nitric oxide lies in the modulation of acetylcholine release.