Olof Ramström, Taridaporn Bunyapaiboonsri, Sophie Lohmann, Jean-Marie Lehn
{"title":"动态组合文库的化学生物学。","authors":"Olof Ramström, Taridaporn Bunyapaiboonsri, Sophie Lohmann, Jean-Marie Lehn","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic combinatorial chemistry (DCC) is a recently introduced supramolecular approach to generate libraries of chemical compounds based on reversible exchange processes. The building elements are spontaneously and reversibly assembled to virtually encompass all possible combinations, allowing for simple one-step generation of complex libraries. The method has been applied to a variety of combinatorial systems, ranging from synthetic models to materials science and drug discovery, and enables the establishment of adaptive processes due to the dynamic interchange of the library constituents and its evolution toward the best fit to the target. In particular, it has the potential to become a useful tool in the direct screening of ligands to a chosen receptor without extensive prior knowledge of the site structure, and several biological systems have been targeted. In the vast field of glycoscience, the concept may find special perspective in response to the highly complex nature of carbohydrate-protein interactions. This chapter summarises studies that have been performed using DCC in biological systems, with special emphasis on glycoscience.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1572 2-3","pages":"178-86"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical biology of dynamic combinatorial libraries.\",\"authors\":\"Olof Ramström, Taridaporn Bunyapaiboonsri, Sophie Lohmann, Jean-Marie Lehn\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic combinatorial chemistry (DCC) is a recently introduced supramolecular approach to generate libraries of chemical compounds based on reversible exchange processes. The building elements are spontaneously and reversibly assembled to virtually encompass all possible combinations, allowing for simple one-step generation of complex libraries. The method has been applied to a variety of combinatorial systems, ranging from synthetic models to materials science and drug discovery, and enables the establishment of adaptive processes due to the dynamic interchange of the library constituents and its evolution toward the best fit to the target. In particular, it has the potential to become a useful tool in the direct screening of ligands to a chosen receptor without extensive prior knowledge of the site structure, and several biological systems have been targeted. In the vast field of glycoscience, the concept may find special perspective in response to the highly complex nature of carbohydrate-protein interactions. This chapter summarises studies that have been performed using DCC in biological systems, with special emphasis on glycoscience.</p>\",\"PeriodicalId\":8811,\"journal\":{\"name\":\"Biochimica et biophysica acta\",\"volume\":\"1572 2-3\",\"pages\":\"178-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical biology of dynamic combinatorial libraries.
Dynamic combinatorial chemistry (DCC) is a recently introduced supramolecular approach to generate libraries of chemical compounds based on reversible exchange processes. The building elements are spontaneously and reversibly assembled to virtually encompass all possible combinations, allowing for simple one-step generation of complex libraries. The method has been applied to a variety of combinatorial systems, ranging from synthetic models to materials science and drug discovery, and enables the establishment of adaptive processes due to the dynamic interchange of the library constituents and its evolution toward the best fit to the target. In particular, it has the potential to become a useful tool in the direct screening of ligands to a chosen receptor without extensive prior knowledge of the site structure, and several biological systems have been targeted. In the vast field of glycoscience, the concept may find special perspective in response to the highly complex nature of carbohydrate-protein interactions. This chapter summarises studies that have been performed using DCC in biological systems, with special emphasis on glycoscience.