M Doumith, P Weingarten, U F Wehmeier, K Salah-Bey, B Benhamou, C Capdevila, J M Michel, W Piepersberg, M C Raynal
{"title":"红糖多孢子菌6-脱氧己糖合成与转移相关基因分析。","authors":"M Doumith, P Weingarten, U F Wehmeier, K Salah-Bey, B Benhamou, C Capdevila, J M Michel, W Piepersberg, M C Raynal","doi":"10.1007/s004380000329","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation represents an attractive target for protein engineering of novel antibiotics, because specific attachment of one or more deoxysugars is required for the bioactivity of many antibiotic and antitumour polyketides. However, proper assessment of the potential of these enzymes for such combinatorial biosynthesis requires both more precise information on the enzymology of the pathways and also improved Escherichia coli-actinomycete shuttle vectors. New replicative vectors have been constructed and used to express independently the dnmU gene of Streptomyces peucetius and the eryBVII gene of Saccharopolyspora erythraea in an eryBVII deletion mutant of Sac. erythraea. Production of erythromycin A was obtained in both cases, showing that both proteins serve analogous functions in the biosynthetic pathways to dTDP-L-daunosamine and dTDP-L-mycarose, respectively. Over-expression of both proteins was also obtained in S. lividans, paving the way for protein purification and in vitro monitoring of enzyme activity. In a further set of experiments, the putative desosaminyltransferase of Sac. erythraea, EryCIII, was expressed in the picromycin producer Streptomyces sp. 20032, which also synthesises dTDP-D-desosamine. The substrate 3-alpha-mycarosylerythronolide B used for hybrid biosynthesis was found to be glycosylated to produce erythromycin D only when recombinant EryCIII was present, directly confirming the enzymatic role of EryCIII. This convenient plasmid expression system can be readily adapted to study the directed evolution of recombinant glycosyltransferases.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"477-85"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000329","citationCount":"104","resultStr":"{\"title\":\"Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea.\",\"authors\":\"M Doumith, P Weingarten, U F Wehmeier, K Salah-Bey, B Benhamou, C Capdevila, J M Michel, W Piepersberg, M C Raynal\",\"doi\":\"10.1007/s004380000329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosylation represents an attractive target for protein engineering of novel antibiotics, because specific attachment of one or more deoxysugars is required for the bioactivity of many antibiotic and antitumour polyketides. However, proper assessment of the potential of these enzymes for such combinatorial biosynthesis requires both more precise information on the enzymology of the pathways and also improved Escherichia coli-actinomycete shuttle vectors. New replicative vectors have been constructed and used to express independently the dnmU gene of Streptomyces peucetius and the eryBVII gene of Saccharopolyspora erythraea in an eryBVII deletion mutant of Sac. erythraea. Production of erythromycin A was obtained in both cases, showing that both proteins serve analogous functions in the biosynthetic pathways to dTDP-L-daunosamine and dTDP-L-mycarose, respectively. Over-expression of both proteins was also obtained in S. lividans, paving the way for protein purification and in vitro monitoring of enzyme activity. In a further set of experiments, the putative desosaminyltransferase of Sac. erythraea, EryCIII, was expressed in the picromycin producer Streptomyces sp. 20032, which also synthesises dTDP-D-desosamine. The substrate 3-alpha-mycarosylerythronolide B used for hybrid biosynthesis was found to be glycosylated to produce erythromycin D only when recombinant EryCIII was present, directly confirming the enzymatic role of EryCIII. This convenient plasmid expression system can be readily adapted to study the directed evolution of recombinant glycosyltransferases.</p>\",\"PeriodicalId\":18636,\"journal\":{\"name\":\"Molecular & general genetics : MGG\",\"volume\":\"264 4\",\"pages\":\"477-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004380000329\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & general genetics : MGG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004380000329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
摘要
糖基化是新型抗生素蛋白质工程的一个有吸引力的目标,因为许多抗生素和抗肿瘤聚酮的生物活性需要一个或多个脱氧糖的特异性附着。然而,要正确评估这些酶在这种组合生物合成中的潜力,既需要更精确的途径酶学信息,也需要改进大肠杆菌-放线菌穿梭载体。构建了新的复制载体,并在Sac的eryBVII缺失突变体中独立表达了peucestreptomyces peucetius dnmU基因和Saccharopolyspora eryBVII基因。erythraea。在这两种情况下都获得了红霉素A的产生,表明这两种蛋白在生物合成途径中分别具有与dtdp - l -丹诺胺和dtdp - l -肌糖相似的功能。在S. lividans中也获得了这两种蛋白的过表达,为蛋白纯化和酶活性的体外监测铺平了道路。在进一步的一组实验中,假定的Sac去糖氨基转移酶。erythraea, EryCIII在微霉素产生菌Streptomyces sp. 20032中表达,该菌株也能合成dtdp -d -去糖胺。用于杂交生物合成的底物3- α - mycarsylerythroonolide B仅在重组EryCIII存在时才被糖基化生成红霉素D,直接证实了EryCIII的酶促作用。这种便捷的质粒表达系统可以很容易地用于研究重组糖基转移酶的定向进化。
Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea.
Glycosylation represents an attractive target for protein engineering of novel antibiotics, because specific attachment of one or more deoxysugars is required for the bioactivity of many antibiotic and antitumour polyketides. However, proper assessment of the potential of these enzymes for such combinatorial biosynthesis requires both more precise information on the enzymology of the pathways and also improved Escherichia coli-actinomycete shuttle vectors. New replicative vectors have been constructed and used to express independently the dnmU gene of Streptomyces peucetius and the eryBVII gene of Saccharopolyspora erythraea in an eryBVII deletion mutant of Sac. erythraea. Production of erythromycin A was obtained in both cases, showing that both proteins serve analogous functions in the biosynthetic pathways to dTDP-L-daunosamine and dTDP-L-mycarose, respectively. Over-expression of both proteins was also obtained in S. lividans, paving the way for protein purification and in vitro monitoring of enzyme activity. In a further set of experiments, the putative desosaminyltransferase of Sac. erythraea, EryCIII, was expressed in the picromycin producer Streptomyces sp. 20032, which also synthesises dTDP-D-desosamine. The substrate 3-alpha-mycarosylerythronolide B used for hybrid biosynthesis was found to be glycosylated to produce erythromycin D only when recombinant EryCIII was present, directly confirming the enzymatic role of EryCIII. This convenient plasmid expression system can be readily adapted to study the directed evolution of recombinant glycosyltransferases.