T E Whitmore, M F Maurer, S Sexson, F Raymond, D Conklin, T A Deisher
{"title":"利用辐射杂交定位和荧光原位杂交技术将成纤维细胞生长因子18 (FGF18)定位到人5q34染色体上。","authors":"T E Whitmore, M F Maurer, S Sexson, F Raymond, D Conklin, T A Deisher","doi":"10.1159/000056775","DOIUrl":null,"url":null,"abstract":"FGF18 is a recently discovered member of the fibroblast growth factor family (Deisher et al., 1999). FGF18 has been reported to induce hepatic and intestinal proliferation in vivo (Hu et al., 1998), and to activate neural cell proliferation in vitro (Ohbayashi et al., 1998). Recently, FGF18 was mapped to both human chromosome 14p11 (Hu et al., 1999), and chromosome 5 (Sanger Centre, NCBI GeneMap’99). To help resolve this discrepancy, we carried out radiation hybrid mapping using both the GeneBridge 4 and the Stanford G3 human/hamster radiation hybrid mapping panels and fluorescence in situ hybridization using a human genomic BAC clone containing the FGF18 gene.","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"90 3-4","pages":"231-3"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056775","citationCount":"10","resultStr":"{\"title\":\"Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization.\",\"authors\":\"T E Whitmore, M F Maurer, S Sexson, F Raymond, D Conklin, T A Deisher\",\"doi\":\"10.1159/000056775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FGF18 is a recently discovered member of the fibroblast growth factor family (Deisher et al., 1999). FGF18 has been reported to induce hepatic and intestinal proliferation in vivo (Hu et al., 1998), and to activate neural cell proliferation in vitro (Ohbayashi et al., 1998). Recently, FGF18 was mapped to both human chromosome 14p11 (Hu et al., 1999), and chromosome 5 (Sanger Centre, NCBI GeneMap’99). To help resolve this discrepancy, we carried out radiation hybrid mapping using both the GeneBridge 4 and the Stanford G3 human/hamster radiation hybrid mapping panels and fluorescence in situ hybridization using a human genomic BAC clone containing the FGF18 gene.\",\"PeriodicalId\":10982,\"journal\":{\"name\":\"Cytogenetics and cell genetics\",\"volume\":\"90 3-4\",\"pages\":\"231-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000056775\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetics and cell genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000056775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetics and cell genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000056775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization.
FGF18 is a recently discovered member of the fibroblast growth factor family (Deisher et al., 1999). FGF18 has been reported to induce hepatic and intestinal proliferation in vivo (Hu et al., 1998), and to activate neural cell proliferation in vitro (Ohbayashi et al., 1998). Recently, FGF18 was mapped to both human chromosome 14p11 (Hu et al., 1999), and chromosome 5 (Sanger Centre, NCBI GeneMap’99). To help resolve this discrepancy, we carried out radiation hybrid mapping using both the GeneBridge 4 and the Stanford G3 human/hamster radiation hybrid mapping panels and fluorescence in situ hybridization using a human genomic BAC clone containing the FGF18 gene.