{"title":"模型催化剂表面丙烯直接环氧化反应途径的实验与理论研究","authors":"William N. Porter, Zhexi Lin, Jingguang G. Chen","doi":"10.1016/j.surfrep.2021.100524","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The direct epoxidation of </span>propylene to propylene oxide (PO) using </span>molecular oxygen<span> is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity<span> toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how </span></span></span>density functional theory<span> (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation<span> pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 2","pages":"Article 100524"},"PeriodicalIF":8.2000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100524","citationCount":"10","resultStr":"{\"title\":\"Experimental and theoretical studies of reaction pathways of direct propylene epoxidation on model catalyst surfaces\",\"authors\":\"William N. Porter, Zhexi Lin, Jingguang G. Chen\",\"doi\":\"10.1016/j.surfrep.2021.100524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>The direct epoxidation of </span>propylene to propylene oxide (PO) using </span>molecular oxygen<span> is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity<span> toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how </span></span></span>density functional theory<span> (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation<span> pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.</span></span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"76 2\",\"pages\":\"Article 100524\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100524\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572921000091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572921000091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Experimental and theoretical studies of reaction pathways of direct propylene epoxidation on model catalyst surfaces
The direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how density functional theory (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.