E M Weissinger, M Franz, C Voss, C Bonini, E Kremmer, H J Kolb
{"title":"单纯疱疹病毒- tk自杀基因在原代T淋巴细胞中的表达:犬临床前模型。","authors":"E M Weissinger, M Franz, C Voss, C Bonini, E Kremmer, H J Kolb","doi":"10.1080/13684730050515886","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of suicide genes (e.g. herpes simplex virus thymidine kinase,HSV-TK) in T cells is an appealing approach to regulate graft-versus-host disease in adoptive immunotherapy. Here we report the optimization of retroviral infection of canine T cells. Canine T cells were stimulated either with phytohemagglutinin (PHA, 2 microg/ml) for 24-72 hours or with 100 U/ml interleukin-2 for seven days. Stimulated cells were co-cultivated with irradiated virus-producing cells. Transduction efficiencies ranged from 4% to 45% using PG13, a gibbon ape leukemia virus envelope (env) pseudotyped packaging cell line. Infection of cells with GPenvAM12, expressing the amphotropic Moloney murine leukemia virus env, did not yield a satisfactory percentage of transduced cells. Enrichment of transduced cells was performed using immunoselection, and gave a purity of up to 98%. Transfusion of 1 x 10(6) transduced cells per kilogram body weight showed that transduced cells could convert mixed chimerism to 100% and transfer immunity to a specific antigen. Transduced cells were repeatedly detected in peripheral blood and bone marrow by polymerase chain reaction with primers specific for the HSV-TK gene. We have demonstrated the feasibility of using the canine model to study gene therapy as a preclinical model.</p>","PeriodicalId":79485,"journal":{"name":"Cytokines, cellular & molecular therapy","volume":"6 1","pages":"25-33"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13684730050515886","citationCount":"12","resultStr":"{\"title\":\"Expression of HSV-TK suicide gene in primary T lymphocytes: the dog as a preclinical model.\",\"authors\":\"E M Weissinger, M Franz, C Voss, C Bonini, E Kremmer, H J Kolb\",\"doi\":\"10.1080/13684730050515886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression of suicide genes (e.g. herpes simplex virus thymidine kinase,HSV-TK) in T cells is an appealing approach to regulate graft-versus-host disease in adoptive immunotherapy. Here we report the optimization of retroviral infection of canine T cells. Canine T cells were stimulated either with phytohemagglutinin (PHA, 2 microg/ml) for 24-72 hours or with 100 U/ml interleukin-2 for seven days. Stimulated cells were co-cultivated with irradiated virus-producing cells. Transduction efficiencies ranged from 4% to 45% using PG13, a gibbon ape leukemia virus envelope (env) pseudotyped packaging cell line. Infection of cells with GPenvAM12, expressing the amphotropic Moloney murine leukemia virus env, did not yield a satisfactory percentage of transduced cells. Enrichment of transduced cells was performed using immunoselection, and gave a purity of up to 98%. Transfusion of 1 x 10(6) transduced cells per kilogram body weight showed that transduced cells could convert mixed chimerism to 100% and transfer immunity to a specific antigen. Transduced cells were repeatedly detected in peripheral blood and bone marrow by polymerase chain reaction with primers specific for the HSV-TK gene. We have demonstrated the feasibility of using the canine model to study gene therapy as a preclinical model.</p>\",\"PeriodicalId\":79485,\"journal\":{\"name\":\"Cytokines, cellular & molecular therapy\",\"volume\":\"6 1\",\"pages\":\"25-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13684730050515886\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokines, cellular & molecular therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13684730050515886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokines, cellular & molecular therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13684730050515886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expression of HSV-TK suicide gene in primary T lymphocytes: the dog as a preclinical model.
Expression of suicide genes (e.g. herpes simplex virus thymidine kinase,HSV-TK) in T cells is an appealing approach to regulate graft-versus-host disease in adoptive immunotherapy. Here we report the optimization of retroviral infection of canine T cells. Canine T cells were stimulated either with phytohemagglutinin (PHA, 2 microg/ml) for 24-72 hours or with 100 U/ml interleukin-2 for seven days. Stimulated cells were co-cultivated with irradiated virus-producing cells. Transduction efficiencies ranged from 4% to 45% using PG13, a gibbon ape leukemia virus envelope (env) pseudotyped packaging cell line. Infection of cells with GPenvAM12, expressing the amphotropic Moloney murine leukemia virus env, did not yield a satisfactory percentage of transduced cells. Enrichment of transduced cells was performed using immunoselection, and gave a purity of up to 98%. Transfusion of 1 x 10(6) transduced cells per kilogram body weight showed that transduced cells could convert mixed chimerism to 100% and transfer immunity to a specific antigen. Transduced cells were repeatedly detected in peripheral blood and bone marrow by polymerase chain reaction with primers specific for the HSV-TK gene. We have demonstrated the feasibility of using the canine model to study gene therapy as a preclinical model.