E Somers, V Keijers, D Ptacek, M Halvorsen Ottoy, M Srinivasan, J Vanderleyden, D Faure
{"title":"伊拉克偶氮螺旋菌的salCAB操纵子是在水杨苷上生长所必需的,它被SalR(一种属于Lacl/GalR家族的转录调节因子)抑制。","authors":"E Somers, V Keijers, D Ptacek, M Halvorsen Ottoy, M Srinivasan, J Vanderleyden, D Faure","doi":"10.1007/pl00008692","DOIUrl":null,"url":null,"abstract":"<p><p>The salAB genes of Azospirillum irakense KBC1, which encode two aryl-beta-glucosidases, are required for growth on salicin. In the 4-kb region upstream of the salAB genes, two additional genes, salC and salR, were identified. SalC shows characteristics of the outer membrane receptors in the FepA/FhuA family. The salC AB genes are transcribed as a polycistronic mRNA. The salR gene encodes a protein homologous to the LacI/GalR family of transcriptional repressors. Expression of the sal operon, measured by means of a salC-gusA translational fusion in A. irkense KBC1, requires the presence of aryl-beta-glucosides such as arbutin and salicin. Expression is markedly enhanced when a simple carbon source, like glucose, cellobiose or malate, is added to the medium. In a salR mutant, expression of the salC-gusA fusion does not require an aryl-beta-glucoside inducer. Expression of a salR-gusA fusion is constitutive. The product of arbutin hydrolysis (hydroquinone) partly inhibits the expression of a salC-gusA fusion in arbutin- or salicin-containing minimal medium. This effect is independent of SalR. Salicylalcohol, the hydrolysis product of salicin, also partly inhibits salC expression in a SalR-independent fashion, but only in salicin-containing minimal medium.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"263 6","pages":"1038-46"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/pl00008692","citationCount":"12","resultStr":"{\"title\":\"The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.\",\"authors\":\"E Somers, V Keijers, D Ptacek, M Halvorsen Ottoy, M Srinivasan, J Vanderleyden, D Faure\",\"doi\":\"10.1007/pl00008692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The salAB genes of Azospirillum irakense KBC1, which encode two aryl-beta-glucosidases, are required for growth on salicin. In the 4-kb region upstream of the salAB genes, two additional genes, salC and salR, were identified. SalC shows characteristics of the outer membrane receptors in the FepA/FhuA family. The salC AB genes are transcribed as a polycistronic mRNA. The salR gene encodes a protein homologous to the LacI/GalR family of transcriptional repressors. Expression of the sal operon, measured by means of a salC-gusA translational fusion in A. irkense KBC1, requires the presence of aryl-beta-glucosides such as arbutin and salicin. Expression is markedly enhanced when a simple carbon source, like glucose, cellobiose or malate, is added to the medium. In a salR mutant, expression of the salC-gusA fusion does not require an aryl-beta-glucoside inducer. Expression of a salR-gusA fusion is constitutive. The product of arbutin hydrolysis (hydroquinone) partly inhibits the expression of a salC-gusA fusion in arbutin- or salicin-containing minimal medium. This effect is independent of SalR. Salicylalcohol, the hydrolysis product of salicin, also partly inhibits salC expression in a SalR-independent fashion, but only in salicin-containing minimal medium.</p>\",\"PeriodicalId\":18636,\"journal\":{\"name\":\"Molecular & general genetics : MGG\",\"volume\":\"263 6\",\"pages\":\"1038-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/pl00008692\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & general genetics : MGG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/pl00008692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/pl00008692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.
The salAB genes of Azospirillum irakense KBC1, which encode two aryl-beta-glucosidases, are required for growth on salicin. In the 4-kb region upstream of the salAB genes, two additional genes, salC and salR, were identified. SalC shows characteristics of the outer membrane receptors in the FepA/FhuA family. The salC AB genes are transcribed as a polycistronic mRNA. The salR gene encodes a protein homologous to the LacI/GalR family of transcriptional repressors. Expression of the sal operon, measured by means of a salC-gusA translational fusion in A. irkense KBC1, requires the presence of aryl-beta-glucosides such as arbutin and salicin. Expression is markedly enhanced when a simple carbon source, like glucose, cellobiose or malate, is added to the medium. In a salR mutant, expression of the salC-gusA fusion does not require an aryl-beta-glucoside inducer. Expression of a salR-gusA fusion is constitutive. The product of arbutin hydrolysis (hydroquinone) partly inhibits the expression of a salC-gusA fusion in arbutin- or salicin-containing minimal medium. This effect is independent of SalR. Salicylalcohol, the hydrolysis product of salicin, also partly inhibits salC expression in a SalR-independent fashion, but only in salicin-containing minimal medium.