强细胞毒性蒽环类前药:半乳糖苷。

Anti-cancer drug design Pub Date : 1999-12-01
E Bakina, D Farquhar
{"title":"强细胞毒性蒽环类前药:半乳糖苷。","authors":"E Bakina,&nbsp;D Farquhar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have reported the synthesis of a series of anthracycline analog prodrugs that give rise to intensely cytotoxic metabolites in the presence of carboxylate esterases and beta-glucuronidases. We now report structurally related prodrugs that are converted to similar potent metabolites in the presence of beta-galactosidases. The prototypical compound, N-[(4\"RS)-4\"-ethoxy-4\"(1'\"-O-beta-D-galactopyranosyl)butyl]daunorubicin, 8a, was prepared by reductive condensation of daunomycin with 1-O-[(1'RS)-1'-ethoxy-4'-oxobutyl]-2, 3, 4, 6-tetra-O-acetyl-beta-D-galactopyranoside in the presence of sodium cyanoborohydride, followed by deacetylation of the galactoside moiety with sodium methoxide. A related prodrug (8b) with enhanced lipophilicity (the 4'-hexoxy analog of 8a) and 8c (the propyldaunomycin analog of 8a) were prepared for comparative studies. 8a and 8b were isolated after chromatography on silica as a mixture of 4'R and 4'S diastereomers; 8c, on the other hand, was resolved into its component 3' diastereomers, 8c(R) and 8c(S). 8a, 8c(R) and 8c(S) showed no evidence of decomposition when incubated at 37 degrees C in 0.05 M phosphate buffer, pH 7.4, for 2 weeks; 8b, under the same conditions, was degraded with a half-life of 49 h. In the presence of two units of Escherichia coli beta-galactosidase per pmol of substrate, the half-lives of 8a, 8b, 8c(R) and 8c(S) were 1.98, 1.06, 3.5 and 2.4 h, respectively. HPLC analysis of the incubation mixtures showed that 8a and 8b gave rise to a single, chromatographically identical metabolite. 8c(R) and 8c(S) also gave rise to a single, identical metabolite. 8a and 8b were nearly one million-fold more toxic to human A375 melanoma cells in culture in the presence of E. coli beta-galactosidase than in the absence of the enzyme. The activation products of 8c(R) and 8c(S) were approximately 1000-fold less potent. These beta-galactoside prodrugs have chemotherapeutic potential for use in conjunction with tissue-targeting strategies such as antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT).</p>","PeriodicalId":7927,"journal":{"name":"Anti-cancer drug design","volume":"14 6","pages":"507-15"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensely cytotoxic anthracycline prodrugs: galactosides.\",\"authors\":\"E Bakina,&nbsp;D Farquhar\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have reported the synthesis of a series of anthracycline analog prodrugs that give rise to intensely cytotoxic metabolites in the presence of carboxylate esterases and beta-glucuronidases. We now report structurally related prodrugs that are converted to similar potent metabolites in the presence of beta-galactosidases. The prototypical compound, N-[(4\\\"RS)-4\\\"-ethoxy-4\\\"(1'\\\"-O-beta-D-galactopyranosyl)butyl]daunorubicin, 8a, was prepared by reductive condensation of daunomycin with 1-O-[(1'RS)-1'-ethoxy-4'-oxobutyl]-2, 3, 4, 6-tetra-O-acetyl-beta-D-galactopyranoside in the presence of sodium cyanoborohydride, followed by deacetylation of the galactoside moiety with sodium methoxide. A related prodrug (8b) with enhanced lipophilicity (the 4'-hexoxy analog of 8a) and 8c (the propyldaunomycin analog of 8a) were prepared for comparative studies. 8a and 8b were isolated after chromatography on silica as a mixture of 4'R and 4'S diastereomers; 8c, on the other hand, was resolved into its component 3' diastereomers, 8c(R) and 8c(S). 8a, 8c(R) and 8c(S) showed no evidence of decomposition when incubated at 37 degrees C in 0.05 M phosphate buffer, pH 7.4, for 2 weeks; 8b, under the same conditions, was degraded with a half-life of 49 h. In the presence of two units of Escherichia coli beta-galactosidase per pmol of substrate, the half-lives of 8a, 8b, 8c(R) and 8c(S) were 1.98, 1.06, 3.5 and 2.4 h, respectively. HPLC analysis of the incubation mixtures showed that 8a and 8b gave rise to a single, chromatographically identical metabolite. 8c(R) and 8c(S) also gave rise to a single, identical metabolite. 8a and 8b were nearly one million-fold more toxic to human A375 melanoma cells in culture in the presence of E. coli beta-galactosidase than in the absence of the enzyme. The activation products of 8c(R) and 8c(S) were approximately 1000-fold less potent. These beta-galactoside prodrugs have chemotherapeutic potential for use in conjunction with tissue-targeting strategies such as antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT).</p>\",\"PeriodicalId\":7927,\"journal\":{\"name\":\"Anti-cancer drug design\",\"volume\":\"14 6\",\"pages\":\"507-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer drug design","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们已经报道了一系列蒽环类前药的合成,这些前药在羧酸酯酶和β -葡萄糖醛酸酶的存在下产生强烈的细胞毒性代谢物。我们现在报道了结构相关的前药在β -半乳糖苷酶存在下转化为类似的有效代谢物。在氰基硼氢化钠存在下,用1- o -[(1'RS)-1'-乙氧基-4'-氧基-4'-氧基丁基]- 2,3,4,6 -四-o -乙酰- β - d -半乳糖苷进行还原缩合,然后用甲氧基钠将半乳糖苷部分去乙酰化,制备了原型化合物N-[(4 'RS)- 4'-乙氧基-4'-丁基]柔红霉素,8a。制备了亲脂性增强的相关前药(8b) (8a的4′-己氧基类似物)和8c (8a的丙基霉素类似物)进行比较研究。8a和8b作为4’r和4’s非对映体在硅胶层析上分离得到;另一方面,8c被分解成其组分3'非对映体8c(R)和8c(S)。8a、8c(R)和8c(S)在37℃、0.05 M磷酸盐缓冲液(pH 7.4)中培养2周后无分解迹象;在相同条件下,8b的半衰期为49 h。当每pmol底物中含有2个单位的大肠杆菌β -半乳糖苷酶时,8a、8b、8c(R)和8c(S)的半衰期分别为1.98、1.06、3.5和2.4 h。对孵育混合物的HPLC分析表明8a和8b产生一种色谱上相同的单一代谢物。8c(R)和8c(S)也产生一种相同的代谢物。在大肠杆菌β -半乳糖苷酶存在的情况下,8a和8b对培养的人类A375黑色素瘤细胞的毒性比在没有酶的情况下高出近100万倍。8c(R)和8c(S)的活化产物的效力大约低1000倍。这些β -半乳糖苷前药具有与组织靶向策略(如抗体导向酶前药治疗(ADEPT)和基因导向酶前药治疗(GDEPT))联合使用的化疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intensely cytotoxic anthracycline prodrugs: galactosides.

We have reported the synthesis of a series of anthracycline analog prodrugs that give rise to intensely cytotoxic metabolites in the presence of carboxylate esterases and beta-glucuronidases. We now report structurally related prodrugs that are converted to similar potent metabolites in the presence of beta-galactosidases. The prototypical compound, N-[(4"RS)-4"-ethoxy-4"(1'"-O-beta-D-galactopyranosyl)butyl]daunorubicin, 8a, was prepared by reductive condensation of daunomycin with 1-O-[(1'RS)-1'-ethoxy-4'-oxobutyl]-2, 3, 4, 6-tetra-O-acetyl-beta-D-galactopyranoside in the presence of sodium cyanoborohydride, followed by deacetylation of the galactoside moiety with sodium methoxide. A related prodrug (8b) with enhanced lipophilicity (the 4'-hexoxy analog of 8a) and 8c (the propyldaunomycin analog of 8a) were prepared for comparative studies. 8a and 8b were isolated after chromatography on silica as a mixture of 4'R and 4'S diastereomers; 8c, on the other hand, was resolved into its component 3' diastereomers, 8c(R) and 8c(S). 8a, 8c(R) and 8c(S) showed no evidence of decomposition when incubated at 37 degrees C in 0.05 M phosphate buffer, pH 7.4, for 2 weeks; 8b, under the same conditions, was degraded with a half-life of 49 h. In the presence of two units of Escherichia coli beta-galactosidase per pmol of substrate, the half-lives of 8a, 8b, 8c(R) and 8c(S) were 1.98, 1.06, 3.5 and 2.4 h, respectively. HPLC analysis of the incubation mixtures showed that 8a and 8b gave rise to a single, chromatographically identical metabolite. 8c(R) and 8c(S) also gave rise to a single, identical metabolite. 8a and 8b were nearly one million-fold more toxic to human A375 melanoma cells in culture in the presence of E. coli beta-galactosidase than in the absence of the enzyme. The activation products of 8c(R) and 8c(S) were approximately 1000-fold less potent. These beta-galactoside prodrugs have chemotherapeutic potential for use in conjunction with tissue-targeting strategies such as antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信