{"title":"使用密集焦耳加热快速卷对卷生产石墨烯薄膜","authors":"Yingjun Liu, Peng Li, Fang Wang, Wenzhang Fang, Zhen Xu, Weiwei Gao, Chao Gao","doi":"10.1016/j.carbon.2019.09.021","DOIUrl":null,"url":null,"abstract":"<div><p>The development of rapid and scalable techniques for thermally conductive film is useful for the improved function and efficiency of electronic devices. The commercially available carbon film that made from polyimide film by sequential carbonization and graphitization in electrical furnace is usually produced in an intermittent way, which inevitably decreases the manufacturing efficiency and increases energy consumption and production cost. Macroscopic graphene film is considered to be an ideal alternative of traditional carbon film due to its combined merits of high thermal conductivity and flexibility. Here, we report a rapid approach to continuously fabricate graphene film by Joule heating of chemically reduced graphene oxide film integrated with a high-throughput roll-to-roll process. The achieved graphene film holds excellent electrical of 4.2 × 10<sup>5</sup> S/m and thermal conductivity of 1285 ± 20 W/mK. Moreover, the intensive Joule heating in a roll-to-roll manner is more time-saving, energy-efficient, and cost-effective than traditional heating method by electrical furnace. Such facial processing strategy offers new opportunities for the scaled-up manufacturing of large area graphene film with potential applications in the fields of thermal management, flexible electronics, and wearable devices.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"155 ","pages":"Pages 462-468"},"PeriodicalIF":10.5000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.carbon.2019.09.021","citationCount":"61","resultStr":"{\"title\":\"Rapid roll-to-roll production of graphene films using intensive Joule heating\",\"authors\":\"Yingjun Liu, Peng Li, Fang Wang, Wenzhang Fang, Zhen Xu, Weiwei Gao, Chao Gao\",\"doi\":\"10.1016/j.carbon.2019.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of rapid and scalable techniques for thermally conductive film is useful for the improved function and efficiency of electronic devices. The commercially available carbon film that made from polyimide film by sequential carbonization and graphitization in electrical furnace is usually produced in an intermittent way, which inevitably decreases the manufacturing efficiency and increases energy consumption and production cost. Macroscopic graphene film is considered to be an ideal alternative of traditional carbon film due to its combined merits of high thermal conductivity and flexibility. Here, we report a rapid approach to continuously fabricate graphene film by Joule heating of chemically reduced graphene oxide film integrated with a high-throughput roll-to-roll process. The achieved graphene film holds excellent electrical of 4.2 × 10<sup>5</sup> S/m and thermal conductivity of 1285 ± 20 W/mK. Moreover, the intensive Joule heating in a roll-to-roll manner is more time-saving, energy-efficient, and cost-effective than traditional heating method by electrical furnace. Such facial processing strategy offers new opportunities for the scaled-up manufacturing of large area graphene film with potential applications in the fields of thermal management, flexible electronics, and wearable devices.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"155 \",\"pages\":\"Pages 462-468\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.carbon.2019.09.021\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622319309261\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622319309261","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rapid roll-to-roll production of graphene films using intensive Joule heating
The development of rapid and scalable techniques for thermally conductive film is useful for the improved function and efficiency of electronic devices. The commercially available carbon film that made from polyimide film by sequential carbonization and graphitization in electrical furnace is usually produced in an intermittent way, which inevitably decreases the manufacturing efficiency and increases energy consumption and production cost. Macroscopic graphene film is considered to be an ideal alternative of traditional carbon film due to its combined merits of high thermal conductivity and flexibility. Here, we report a rapid approach to continuously fabricate graphene film by Joule heating of chemically reduced graphene oxide film integrated with a high-throughput roll-to-roll process. The achieved graphene film holds excellent electrical of 4.2 × 105 S/m and thermal conductivity of 1285 ± 20 W/mK. Moreover, the intensive Joule heating in a roll-to-roll manner is more time-saving, energy-efficient, and cost-effective than traditional heating method by electrical furnace. Such facial processing strategy offers new opportunities for the scaled-up manufacturing of large area graphene film with potential applications in the fields of thermal management, flexible electronics, and wearable devices.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.