{"title":"喹苯并恶嗪类:DNA结合与生物活性的关系。","authors":"Y Kwok, D Sun, J J Clement, L H Hurley","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The quinobenzoxazine compounds, derived from antibacterial quinolones, is active in vitro and in vivo against murine and human tumors. In this contribution, we show that the relative DNA binding affinity of the quinobenzoxazine compounds correlates with their cytotoxicity, their ability to inhibit gyrase-DNA complex formation, and the decatenation of kinetoplast DNA by human topoisomerase II. DNA binding studies with the descarboxy-A-62176 analogue indicate that the beta-keto acid moiety of the quinobenzoxazine compounds plays an important role in their interaction with DNA.</p>","PeriodicalId":7927,"journal":{"name":"Anti-cancer drug design","volume":"14 5","pages":"443-50"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quinobenzoxazines: relationship between DNA binding and biological activity.\",\"authors\":\"Y Kwok, D Sun, J J Clement, L H Hurley\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quinobenzoxazine compounds, derived from antibacterial quinolones, is active in vitro and in vivo against murine and human tumors. In this contribution, we show that the relative DNA binding affinity of the quinobenzoxazine compounds correlates with their cytotoxicity, their ability to inhibit gyrase-DNA complex formation, and the decatenation of kinetoplast DNA by human topoisomerase II. DNA binding studies with the descarboxy-A-62176 analogue indicate that the beta-keto acid moiety of the quinobenzoxazine compounds plays an important role in their interaction with DNA.</p>\",\"PeriodicalId\":7927,\"journal\":{\"name\":\"Anti-cancer drug design\",\"volume\":\"14 5\",\"pages\":\"443-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer drug design","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The quinobenzoxazines: relationship between DNA binding and biological activity.
The quinobenzoxazine compounds, derived from antibacterial quinolones, is active in vitro and in vivo against murine and human tumors. In this contribution, we show that the relative DNA binding affinity of the quinobenzoxazine compounds correlates with their cytotoxicity, their ability to inhibit gyrase-DNA complex formation, and the decatenation of kinetoplast DNA by human topoisomerase II. DNA binding studies with the descarboxy-A-62176 analogue indicate that the beta-keto acid moiety of the quinobenzoxazine compounds plays an important role in their interaction with DNA.