{"title":"黑曲霉转录激活因子XlnR参与多糖木聚糖和纤维素的降解,也调节d -木糖还原酶基因的表达。","authors":"A A Hasper, J Visser, L H de Graaff","doi":"10.1046/j.1365-2958.2000.01843.x","DOIUrl":null,"url":null,"abstract":"<p><p>Screening of an Aspergillus niger differential cDNA library, constructed by subtracting cDNA fragments of a xlnR loss-of-function mutant from wild-type cDNA fragments, resulted in the cloning of the gene encoding D-xylose reductase (xyrA). Northern blot analysis using an A. niger wild-type strain, a xlnR multiple-copy strain and a xlnR loss-of-function mutant confirmed that the xyrA gene is regulated by XlnR, the transcriptional activator of the xylanolytic enzyme system in A. niger. D-xylose reductase catalyses the NADPH-dependent reduction of D-xylose to xylitol, which is the first step in D-xylose catabolism in fungi. Until now, XlnR was shown to control the transcription of genes encoding extracellular hydrolytic enzymes involved in cellulose and xylan degradation. In the present study, we show that A. niger is able to harmonize its sugar metabolism and extracellular xylan degradation via XlnR by regulating the expression of XyrA.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"36 1","pages":"193-200"},"PeriodicalIF":2.6000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1365-2958.2000.01843.x","citationCount":"144","resultStr":"{\"title\":\"The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression.\",\"authors\":\"A A Hasper, J Visser, L H de Graaff\",\"doi\":\"10.1046/j.1365-2958.2000.01843.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Screening of an Aspergillus niger differential cDNA library, constructed by subtracting cDNA fragments of a xlnR loss-of-function mutant from wild-type cDNA fragments, resulted in the cloning of the gene encoding D-xylose reductase (xyrA). Northern blot analysis using an A. niger wild-type strain, a xlnR multiple-copy strain and a xlnR loss-of-function mutant confirmed that the xyrA gene is regulated by XlnR, the transcriptional activator of the xylanolytic enzyme system in A. niger. D-xylose reductase catalyses the NADPH-dependent reduction of D-xylose to xylitol, which is the first step in D-xylose catabolism in fungi. Until now, XlnR was shown to control the transcription of genes encoding extracellular hydrolytic enzymes involved in cellulose and xylan degradation. In the present study, we show that A. niger is able to harmonize its sugar metabolism and extracellular xylan degradation via XlnR by regulating the expression of XyrA.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\"36 1\",\"pages\":\"193-200\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2000-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1046/j.1365-2958.2000.01843.x\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1365-2958.2000.01843.x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1046/j.1365-2958.2000.01843.x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression.
Screening of an Aspergillus niger differential cDNA library, constructed by subtracting cDNA fragments of a xlnR loss-of-function mutant from wild-type cDNA fragments, resulted in the cloning of the gene encoding D-xylose reductase (xyrA). Northern blot analysis using an A. niger wild-type strain, a xlnR multiple-copy strain and a xlnR loss-of-function mutant confirmed that the xyrA gene is regulated by XlnR, the transcriptional activator of the xylanolytic enzyme system in A. niger. D-xylose reductase catalyses the NADPH-dependent reduction of D-xylose to xylitol, which is the first step in D-xylose catabolism in fungi. Until now, XlnR was shown to control the transcription of genes encoding extracellular hydrolytic enzymes involved in cellulose and xylan degradation. In the present study, we show that A. niger is able to harmonize its sugar metabolism and extracellular xylan degradation via XlnR by regulating the expression of XyrA.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.