本征曼视前区的电刺激:诱发电器官放电的中断。

C J Wong
{"title":"本征曼视前区的电刺激:诱发电器官放电的中断。","authors":"C J Wong","doi":"10.1007/s003590050009","DOIUrl":null,"url":null,"abstract":"<p><p>The functional role of the basal forebrain and preoptic regions in modulating the normally regular electric organ discharge was determined by focal brain stimulation in the weakly electric fish, Eigenmannia. The rostral preoptic area, which is connected with the diencephalic prepacemaker nucleus, was examined physiologically by electrical stimulation in a curarized fish. Electrical stimulation of the most rostral region of the preoptic area with trains of relatively low intensity current elicits discrete bursts of electric organ discharge interruptions in contrast to other forebrain loci. These responses were observed primarily as after-responses following the termination of the stimulus train and were relatively immune to variations in the stimulus parameters. As the duration and rate of these preoptic-evoked bursts of electric organ discharge interruptions (approximately 100 ms at 2 per s) are similar to duration and rate of natural interruptions, it is proposed that these bursts might be precursors to natural interruptions. These data suggest that the preoptic area, consistent with its role in controlling reproductive behaviors in vertebrates, may be influencing the occurrence of electric organ discharge courtship signals by either direct actions on the prepacemaker nucleus or through other regions that are connected with the diencephalic pre-pacemaker nucleus.</p>","PeriodicalId":15522,"journal":{"name":"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology","volume":"186 1","pages":"81-93"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s003590050009","citationCount":"27","resultStr":"{\"title\":\"Electrical stimulation of the preoptic area in Eigenmannia: evoked interruptions in the electric organ discharge.\",\"authors\":\"C J Wong\",\"doi\":\"10.1007/s003590050009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functional role of the basal forebrain and preoptic regions in modulating the normally regular electric organ discharge was determined by focal brain stimulation in the weakly electric fish, Eigenmannia. The rostral preoptic area, which is connected with the diencephalic prepacemaker nucleus, was examined physiologically by electrical stimulation in a curarized fish. Electrical stimulation of the most rostral region of the preoptic area with trains of relatively low intensity current elicits discrete bursts of electric organ discharge interruptions in contrast to other forebrain loci. These responses were observed primarily as after-responses following the termination of the stimulus train and were relatively immune to variations in the stimulus parameters. As the duration and rate of these preoptic-evoked bursts of electric organ discharge interruptions (approximately 100 ms at 2 per s) are similar to duration and rate of natural interruptions, it is proposed that these bursts might be precursors to natural interruptions. These data suggest that the preoptic area, consistent with its role in controlling reproductive behaviors in vertebrates, may be influencing the occurrence of electric organ discharge courtship signals by either direct actions on the prepacemaker nucleus or through other regions that are connected with the diencephalic pre-pacemaker nucleus.</p>\",\"PeriodicalId\":15522,\"journal\":{\"name\":\"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology\",\"volume\":\"186 1\",\"pages\":\"81-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s003590050009\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s003590050009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s003590050009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本研究采用局灶性脑刺激法研究了弱电鱼基底前脑和视前区在调节正常电器官放电中的功能作用。用电刺激对与间脑起搏器核相连的吻侧视前区进行了生理检查。与其他前脑部位不同,用相对低强度电流对视前区的最吻侧区域进行电刺激会引起电器官放电中断的离散爆发。这些反应主要是在刺激序列结束后的后反应,并且相对不受刺激参数变化的影响。由于这些视前诱发的电器官放电中断爆发的持续时间和速率(约100 ms,每秒2次)与自然中断的持续时间和速率相似,因此提出这些爆发可能是自然中断的前兆。这些数据表明,视前区与其在脊椎动物中控制生殖行为的作用一致,可能通过直接作用于预起搏器核或通过与间脑预起搏器核相连的其他区域影响电器官发出求爱信号的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical stimulation of the preoptic area in Eigenmannia: evoked interruptions in the electric organ discharge.

The functional role of the basal forebrain and preoptic regions in modulating the normally regular electric organ discharge was determined by focal brain stimulation in the weakly electric fish, Eigenmannia. The rostral preoptic area, which is connected with the diencephalic prepacemaker nucleus, was examined physiologically by electrical stimulation in a curarized fish. Electrical stimulation of the most rostral region of the preoptic area with trains of relatively low intensity current elicits discrete bursts of electric organ discharge interruptions in contrast to other forebrain loci. These responses were observed primarily as after-responses following the termination of the stimulus train and were relatively immune to variations in the stimulus parameters. As the duration and rate of these preoptic-evoked bursts of electric organ discharge interruptions (approximately 100 ms at 2 per s) are similar to duration and rate of natural interruptions, it is proposed that these bursts might be precursors to natural interruptions. These data suggest that the preoptic area, consistent with its role in controlling reproductive behaviors in vertebrates, may be influencing the occurrence of electric organ discharge courtship signals by either direct actions on the prepacemaker nucleus or through other regions that are connected with the diencephalic pre-pacemaker nucleus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信