织囊放电对振动刺激的节律性敏化反应。

Journal of Experimental Zoology Pub Date : 2000-02-15
G M Watson, S Venable, P Mire
{"title":"织囊放电对振动刺激的节律性敏化反应。","authors":"G M Watson,&nbsp;S Venable,&nbsp;P Mire","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sea anemones capture prey by discharging nematocysts and other cnidae. Discharge of microbasic p-mastigophore (mpm) nematocysts is regulated in part by hair bundle mechanoreceptors on tentacles arising from multicellular complexes consisting of supporting cells and a sensory neuron. Anemone hair bundles detect movements of prey and then sensitize cnidocytes (cnida-containing cells) to discharge mpm nematocysts in response to contact between the prey and tentacle. Data from a simple bioassay based on counting nematocysts discharged into test probes, indicate that approximately twice as many nematocysts discharge into test probes touched to tentacles after sensitization than before sensitization. We here report that sub-second bursts of vibrational stimuli at key frequencies (51, 55, 65, or 74 Hz; Watson GM, Mire P, Hudson RR. 1998. J Exp Zool 281:582-593) sensitize discharge for at least 90 sec. Very few complete cycles of vibration are sufficient to sensitize discharge. However, as the number of cycles of vibration is increased, discharge is sensitized in rhythmic patterns. Computer analysis of the data by fast Fourier transforms indicates discharge to vibrations at 65 Hz is sensitized every 6.75 cycles. At 51 Hz discharge is sensitized every 2.00 cycles. At 74 Hz, discharge is sensitized in a polyrhythm occurring every 4.26, 3.76, 2.46, and 2. 10 cycles, respectively. At 55 Hz, discharge is sensitized in a polyrhythm occurring every 6.09, 3.20, 2.91, and 2.0 cycles, respectively. Apparently, cells in the neuronal pathway interconnecting anemone hair bundles with cnidocytes count cycles of vibration and then sensitize discharge or not according to the tally. J. Exp. Zool. 286:262-269, 2000.</p>","PeriodicalId":15686,"journal":{"name":"Journal of Experimental Zoology","volume":"286 3","pages":"262-9"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhythmic sensitization of nematocyst discharge in response to vibrational stimuli.\",\"authors\":\"G M Watson,&nbsp;S Venable,&nbsp;P Mire\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sea anemones capture prey by discharging nematocysts and other cnidae. Discharge of microbasic p-mastigophore (mpm) nematocysts is regulated in part by hair bundle mechanoreceptors on tentacles arising from multicellular complexes consisting of supporting cells and a sensory neuron. Anemone hair bundles detect movements of prey and then sensitize cnidocytes (cnida-containing cells) to discharge mpm nematocysts in response to contact between the prey and tentacle. Data from a simple bioassay based on counting nematocysts discharged into test probes, indicate that approximately twice as many nematocysts discharge into test probes touched to tentacles after sensitization than before sensitization. We here report that sub-second bursts of vibrational stimuli at key frequencies (51, 55, 65, or 74 Hz; Watson GM, Mire P, Hudson RR. 1998. J Exp Zool 281:582-593) sensitize discharge for at least 90 sec. Very few complete cycles of vibration are sufficient to sensitize discharge. However, as the number of cycles of vibration is increased, discharge is sensitized in rhythmic patterns. Computer analysis of the data by fast Fourier transforms indicates discharge to vibrations at 65 Hz is sensitized every 6.75 cycles. At 51 Hz discharge is sensitized every 2.00 cycles. At 74 Hz, discharge is sensitized in a polyrhythm occurring every 4.26, 3.76, 2.46, and 2. 10 cycles, respectively. At 55 Hz, discharge is sensitized in a polyrhythm occurring every 6.09, 3.20, 2.91, and 2.0 cycles, respectively. Apparently, cells in the neuronal pathway interconnecting anemone hair bundles with cnidocytes count cycles of vibration and then sensitize discharge or not according to the tally. J. Exp. Zool. 286:262-269, 2000.</p>\",\"PeriodicalId\":15686,\"journal\":{\"name\":\"Journal of Experimental Zoology\",\"volume\":\"286 3\",\"pages\":\"262-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Zoology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Zoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海葵通过释放刺丝囊和其他刺丝来捕获猎物。微碱性p-乳突细胞(mpm)刺丝囊的放电部分受触须上由支持细胞和感觉神经元组成的多细胞复合物产生的毛束机械感受器的调节。海葵的毛束探测猎物的运动,然后使刺胞细胞(含刺胞细胞)敏感,在猎物和触手接触时释放mpm刺丝囊。一项简单的生物测定数据表明,在敏化后,接触触须的刺丝囊排出到测试探针中的刺丝囊数量大约是敏化前的两倍。我们在此报告了在关键频率(51、55、65或74 Hz)下的亚秒级振动刺激爆发;华森GM,米尔P,哈德森RR。1998. J Exp Zool 281:582-593)敏化放电至少90秒。很少有完整的振动周期足以敏化放电。然而,随着振动循环次数的增加,放电在有节奏的模式中被敏化。通过快速傅立叶变换对数据进行的计算机分析表明,65 Hz的振动放电每6.75个周期敏化一次。在51赫兹放电敏化每2.00周期。在74 Hz时,放电以每4.26、3.76、2.46和2次发生的多节奏敏化。分别为10个周期。在55 Hz时,放电以多节奏敏化,分别每6.09、3.20、2.91和2.0个周期发生一次。显然,连接海葵毛束和刺丝细胞的神经元通路上的细胞对振动周期进行计数,然后根据计数对放电或不放电敏感。[j] .中国医学工程学报,2006(6):387 - 398。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rhythmic sensitization of nematocyst discharge in response to vibrational stimuli.

Sea anemones capture prey by discharging nematocysts and other cnidae. Discharge of microbasic p-mastigophore (mpm) nematocysts is regulated in part by hair bundle mechanoreceptors on tentacles arising from multicellular complexes consisting of supporting cells and a sensory neuron. Anemone hair bundles detect movements of prey and then sensitize cnidocytes (cnida-containing cells) to discharge mpm nematocysts in response to contact between the prey and tentacle. Data from a simple bioassay based on counting nematocysts discharged into test probes, indicate that approximately twice as many nematocysts discharge into test probes touched to tentacles after sensitization than before sensitization. We here report that sub-second bursts of vibrational stimuli at key frequencies (51, 55, 65, or 74 Hz; Watson GM, Mire P, Hudson RR. 1998. J Exp Zool 281:582-593) sensitize discharge for at least 90 sec. Very few complete cycles of vibration are sufficient to sensitize discharge. However, as the number of cycles of vibration is increased, discharge is sensitized in rhythmic patterns. Computer analysis of the data by fast Fourier transforms indicates discharge to vibrations at 65 Hz is sensitized every 6.75 cycles. At 51 Hz discharge is sensitized every 2.00 cycles. At 74 Hz, discharge is sensitized in a polyrhythm occurring every 4.26, 3.76, 2.46, and 2. 10 cycles, respectively. At 55 Hz, discharge is sensitized in a polyrhythm occurring every 6.09, 3.20, 2.91, and 2.0 cycles, respectively. Apparently, cells in the neuronal pathway interconnecting anemone hair bundles with cnidocytes count cycles of vibration and then sensitize discharge or not according to the tally. J. Exp. Zool. 286:262-269, 2000.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信