H Raes, B P Braeckman, G R Criel, U Rzeznik, J R Vanfleteren
{"title":"铜诱导伊蚊C6/36细胞凋亡。","authors":"H Raes, B P Braeckman, G R Criel, U Rzeznik, J R Vanfleteren","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Aedes albopictus C6/36 cell clone is used as a model system to study the effects of heavy metals on insect cells. Here we report on the effects of Cu(2+) on these cells. Similar to Cd(2+) and Hg(2+), Cu(2+) induces hyperpolymerization of the microtubules; moreover, with Cu(2+) this is followed by cell aggregation and massive apoptosis. This process, which is cell density dependent, is maximal between 0.75 and 1 mM; this is just under the LC(50) as determined by a membrane integrity test. At higher Cu(2+) concentrations, cell death occurs by necrosis. Apoptosis was ascertained by fluorescence and electron microscopy and by agarose gel electrophoresis. At 0.75 mM, apoptosis started at 18-hr exposure time and the amount of apoptotic cells increased almost linearly until 42 hr; then a plateau was reached with 70-80% apoptotic cells. This is the first report on Cu(2+)-induced apoptosis in insect cells. Possible induction mechanisms are discussed in the light of existing literature on vertebrate cells.</p>","PeriodicalId":15686,"journal":{"name":"Journal of Experimental Zoology","volume":"286 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper induces apoptosis in Aedes C6/36 cells.\",\"authors\":\"H Raes, B P Braeckman, G R Criel, U Rzeznik, J R Vanfleteren\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Aedes albopictus C6/36 cell clone is used as a model system to study the effects of heavy metals on insect cells. Here we report on the effects of Cu(2+) on these cells. Similar to Cd(2+) and Hg(2+), Cu(2+) induces hyperpolymerization of the microtubules; moreover, with Cu(2+) this is followed by cell aggregation and massive apoptosis. This process, which is cell density dependent, is maximal between 0.75 and 1 mM; this is just under the LC(50) as determined by a membrane integrity test. At higher Cu(2+) concentrations, cell death occurs by necrosis. Apoptosis was ascertained by fluorescence and electron microscopy and by agarose gel electrophoresis. At 0.75 mM, apoptosis started at 18-hr exposure time and the amount of apoptotic cells increased almost linearly until 42 hr; then a plateau was reached with 70-80% apoptotic cells. This is the first report on Cu(2+)-induced apoptosis in insect cells. Possible induction mechanisms are discussed in the light of existing literature on vertebrate cells.</p>\",\"PeriodicalId\":15686,\"journal\":{\"name\":\"Journal of Experimental Zoology\",\"volume\":\"286 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Zoology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Zoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Aedes albopictus C6/36 cell clone is used as a model system to study the effects of heavy metals on insect cells. Here we report on the effects of Cu(2+) on these cells. Similar to Cd(2+) and Hg(2+), Cu(2+) induces hyperpolymerization of the microtubules; moreover, with Cu(2+) this is followed by cell aggregation and massive apoptosis. This process, which is cell density dependent, is maximal between 0.75 and 1 mM; this is just under the LC(50) as determined by a membrane integrity test. At higher Cu(2+) concentrations, cell death occurs by necrosis. Apoptosis was ascertained by fluorescence and electron microscopy and by agarose gel electrophoresis. At 0.75 mM, apoptosis started at 18-hr exposure time and the amount of apoptotic cells increased almost linearly until 42 hr; then a plateau was reached with 70-80% apoptotic cells. This is the first report on Cu(2+)-induced apoptosis in insect cells. Possible induction mechanisms are discussed in the light of existing literature on vertebrate cells.