{"title":"5-脂氧合酶的生物学:功能、结构和调控机制。","authors":"E S Silverman, J M Drazen","doi":"10.1046/j.1525-1381.1999.t01-1-99231.x","DOIUrl":null,"url":null,"abstract":"<p><p>5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to leukotriene A4 (LTA4). The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. These events are the first committed reactions leading to the synthesis of all leukotrienes and play a critical role in controlling leukotriene production. 5-LO has evolved many complex structural features and regulatory mechanisms to allow it to fulfill this highly specialized role. The biology of 5-LO is reviewed here with an emphasis on enzymatic function, protein and gene structure, essential cofactors, and the many regulatory mechanisms controlling its expression.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"The biology of 5-lipoxygenase: function, structure, and regulatory mechanisms.\",\"authors\":\"E S Silverman, J M Drazen\",\"doi\":\"10.1046/j.1525-1381.1999.t01-1-99231.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to leukotriene A4 (LTA4). The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. These events are the first committed reactions leading to the synthesis of all leukotrienes and play a critical role in controlling leukotriene production. 5-LO has evolved many complex structural features and regulatory mechanisms to allow it to fulfill this highly specialized role. The biology of 5-LO is reviewed here with an emphasis on enzymatic function, protein and gene structure, essential cofactors, and the many regulatory mechanisms controlling its expression.</p>\",\"PeriodicalId\":20612,\"journal\":{\"name\":\"Proceedings of the Association of American Physicians\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Association of American Physicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1525-1381.1999.t01-1-99231.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Association of American Physicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1381.1999.t01-1-99231.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The biology of 5-lipoxygenase: function, structure, and regulatory mechanisms.
5-Lipoxygenase (5-LO) catalyzes the two-step conversion of arachidonic acid to leukotriene A4 (LTA4). The first step consists of the oxidation of arachidonic acid to the unstable intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE), and the second step is the dehydration of 5-HPETE to form LTA4. These events are the first committed reactions leading to the synthesis of all leukotrienes and play a critical role in controlling leukotriene production. 5-LO has evolved many complex structural features and regulatory mechanisms to allow it to fulfill this highly specialized role. The biology of 5-LO is reviewed here with an emphasis on enzymatic function, protein and gene structure, essential cofactors, and the many regulatory mechanisms controlling its expression.