兴奋性氨基酸在缺氧预处理中的作用。

J Xie, G Lu, Y Hou
{"title":"兴奋性氨基酸在缺氧预处理中的作用。","authors":"J Xie,&nbsp;G Lu,&nbsp;Y Hou","doi":"10.1159/000014597","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the effects of the extrinsic ionotropic NMDA receptor agonist (aspartate) and antagonist (ketamine) on the hypoxic preconditioning of mice and the concentration changes of intrinsic excitatory amino acids (EAAs), aspartate and glutamate, in the whole brain and different brain regions during preconditioning by an HPLC method. Our results showed that aspartate and ketamine significantly prolonged and shortened the standard tolerance time of mice during preconditioning and survival time in hypobaric chambers, respectively. After the 1st exposure, EAA concentrations in the whole brain and brain regions were increased. After run 4, they were decreased or maintained. It is suggested that the activation and suppression of ionotropic NMDA receptors is harmful and beneficial to hypoxic preconditioning, respectively. Degradation and/or inactivation of EAAs might be beneficial to the tolerance of mice to hypoxia.</p>","PeriodicalId":79565,"journal":{"name":"Biological signals and receptors","volume":"8 4-5","pages":"267-74"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000014597","citationCount":"25","resultStr":"{\"title\":\"Role of excitatory amino acids in hypoxic preconditioning.\",\"authors\":\"J Xie,&nbsp;G Lu,&nbsp;Y Hou\",\"doi\":\"10.1159/000014597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the effects of the extrinsic ionotropic NMDA receptor agonist (aspartate) and antagonist (ketamine) on the hypoxic preconditioning of mice and the concentration changes of intrinsic excitatory amino acids (EAAs), aspartate and glutamate, in the whole brain and different brain regions during preconditioning by an HPLC method. Our results showed that aspartate and ketamine significantly prolonged and shortened the standard tolerance time of mice during preconditioning and survival time in hypobaric chambers, respectively. After the 1st exposure, EAA concentrations in the whole brain and brain regions were increased. After run 4, they were decreased or maintained. It is suggested that the activation and suppression of ionotropic NMDA receptors is harmful and beneficial to hypoxic preconditioning, respectively. Degradation and/or inactivation of EAAs might be beneficial to the tolerance of mice to hypoxia.</p>\",\"PeriodicalId\":79565,\"journal\":{\"name\":\"Biological signals and receptors\",\"volume\":\"8 4-5\",\"pages\":\"267-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000014597\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological signals and receptors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000014597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals and receptors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000014597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

采用高效液相色谱法研究了外源性嗜离子性NMDA受体激动剂(天冬氨酸)和拮抗剂(氯胺酮)对小鼠缺氧预处理的影响,以及预处理过程中全脑和不同脑区内兴奋性氨基酸(EAAs)、天冬氨酸和谷氨酸的浓度变化。我们的研究结果表明,天冬氨酸和氯胺酮分别显著延长和缩短了小鼠在低压舱中的预适应和生存时间。第1次暴露后,全脑和脑区EAA浓度均升高。在运行4后,它们减少或维持。提示NMDA离子性受体的激活和抑制对缺氧预处理分别有害和有益。EAAs的降解和/或失活可能有利于小鼠的缺氧耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of excitatory amino acids in hypoxic preconditioning.

We examined the effects of the extrinsic ionotropic NMDA receptor agonist (aspartate) and antagonist (ketamine) on the hypoxic preconditioning of mice and the concentration changes of intrinsic excitatory amino acids (EAAs), aspartate and glutamate, in the whole brain and different brain regions during preconditioning by an HPLC method. Our results showed that aspartate and ketamine significantly prolonged and shortened the standard tolerance time of mice during preconditioning and survival time in hypobaric chambers, respectively. After the 1st exposure, EAA concentrations in the whole brain and brain regions were increased. After run 4, they were decreased or maintained. It is suggested that the activation and suppression of ionotropic NMDA receptors is harmful and beneficial to hypoxic preconditioning, respectively. Degradation and/or inactivation of EAAs might be beneficial to the tolerance of mice to hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信