{"title":"地中海贫血和疟疾:对老问题的新认识。","authors":"J B Clegg, D J Weatherall","doi":"10.1046/j.1525-1381.1999.99235.x","DOIUrl":null,"url":null,"abstract":"<p><p>The hemoglobinopathies are probably the world's most common genetic diseases: The World Health Organization has estimated that at least 5% of the population are carriers for one or other of the most serious forms, the alpha- and beta-thalassemias and the structural variant hemoglobins S, C, and E, which are found at polymorphic frequencies in many countries. All these hemoglobinopathies are believed to provide protection against malaria, and it is thought that, in malarial regions of the world, natural selection has been responsible for elevating and maintaining their gene frequencies, an idea first proposed 50 years ago by J.B.S. Haldane. Epidemiological studies undertaken in the 1950s on hemoglobin S in Africa provided support for the \"malaria hypothesis,\" but until recently it has proved extremely difficult to verify it for the thalassemias. The application of molecular methods has, however, provided new opportunities to address this old question. Population and molecular genetic analysis of thalassemia variants, and microepidemiological studies of the relationship between alpha-thalassemia and malaria in the southwest Pacific, have provided unequivocal evidence for protection. Surprisingly, some of this protection appears to derive from enhanced susceptibility in very young thalassemic children to both Plasmodium falciparum and, especially, P. vivax, and this early exposure appears to provide the basis for better protection in later life.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"111 4","pages":"278-82"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Thalassemia and malaria: new insights into an old problem.\",\"authors\":\"J B Clegg, D J Weatherall\",\"doi\":\"10.1046/j.1525-1381.1999.99235.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hemoglobinopathies are probably the world's most common genetic diseases: The World Health Organization has estimated that at least 5% of the population are carriers for one or other of the most serious forms, the alpha- and beta-thalassemias and the structural variant hemoglobins S, C, and E, which are found at polymorphic frequencies in many countries. All these hemoglobinopathies are believed to provide protection against malaria, and it is thought that, in malarial regions of the world, natural selection has been responsible for elevating and maintaining their gene frequencies, an idea first proposed 50 years ago by J.B.S. Haldane. Epidemiological studies undertaken in the 1950s on hemoglobin S in Africa provided support for the \\\"malaria hypothesis,\\\" but until recently it has proved extremely difficult to verify it for the thalassemias. The application of molecular methods has, however, provided new opportunities to address this old question. Population and molecular genetic analysis of thalassemia variants, and microepidemiological studies of the relationship between alpha-thalassemia and malaria in the southwest Pacific, have provided unequivocal evidence for protection. Surprisingly, some of this protection appears to derive from enhanced susceptibility in very young thalassemic children to both Plasmodium falciparum and, especially, P. vivax, and this early exposure appears to provide the basis for better protection in later life.</p>\",\"PeriodicalId\":20612,\"journal\":{\"name\":\"Proceedings of the Association of American Physicians\",\"volume\":\"111 4\",\"pages\":\"278-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Association of American Physicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1525-1381.1999.99235.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Association of American Physicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1381.1999.99235.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thalassemia and malaria: new insights into an old problem.
The hemoglobinopathies are probably the world's most common genetic diseases: The World Health Organization has estimated that at least 5% of the population are carriers for one or other of the most serious forms, the alpha- and beta-thalassemias and the structural variant hemoglobins S, C, and E, which are found at polymorphic frequencies in many countries. All these hemoglobinopathies are believed to provide protection against malaria, and it is thought that, in malarial regions of the world, natural selection has been responsible for elevating and maintaining their gene frequencies, an idea first proposed 50 years ago by J.B.S. Haldane. Epidemiological studies undertaken in the 1950s on hemoglobin S in Africa provided support for the "malaria hypothesis," but until recently it has proved extremely difficult to verify it for the thalassemias. The application of molecular methods has, however, provided new opportunities to address this old question. Population and molecular genetic analysis of thalassemia variants, and microepidemiological studies of the relationship between alpha-thalassemia and malaria in the southwest Pacific, have provided unequivocal evidence for protection. Surprisingly, some of this protection appears to derive from enhanced susceptibility in very young thalassemic children to both Plasmodium falciparum and, especially, P. vivax, and this early exposure appears to provide the basis for better protection in later life.