{"title":"-生育酚和谷胱甘肽缺乏症,以及皮肤热损伤后红细胞变形能力降低。","authors":"G Bekyarova, T Yankova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Burns are followed by oxidative changes in red blood cells, probably as a result of ischemia/reperfusion which takes place in the microvasculature of the injured tissues. This leads to a marked decrease in the erythrocyte deformability, one of the most prominent factors for haemorheological disorders in the early post-burn period. We found that at the 24 th hour after burn skin injury of rats, the decrease in erythrocyte deformability was accompanied by an increase of fluorescent product levels in red blood cells. The erythrocyte systems for antioxidative protection fail to control the oxidative burst after burning. This was due to the decreased concentration of vitamin E (a-tocopherol) and reduced glutathione (GSH) and the increased oxidized glutathione (GSSG) in red blood cells. Both alpha-tocopherol and GSH-deficiency potentiate the susceptibility of red blood cells to oxidative membrane injury, and decrease the deformability of thermally affected erythrocytes. Treatment with alpha-tocopherol (20 ml/kg b.m., immediately after thermal skin injury) prevented the vitamin E reduction and peroxidative membrane damage of erythrocytes and improved their deformability. These results provided strong evidence that the decreased erythrocyte deformability is partly related with alpha-tocopherol deficiency and oxidative membrane damage of red blood cells in the early post burn period.</p>","PeriodicalId":7035,"journal":{"name":"Acta physiologica et pharmacologica Bulgarica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"alpha-Tocopherol and reduced glutathione deficiency and decreased deformability of erythrocytes after thermal skin injury.\",\"authors\":\"G Bekyarova, T Yankova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Burns are followed by oxidative changes in red blood cells, probably as a result of ischemia/reperfusion which takes place in the microvasculature of the injured tissues. This leads to a marked decrease in the erythrocyte deformability, one of the most prominent factors for haemorheological disorders in the early post-burn period. We found that at the 24 th hour after burn skin injury of rats, the decrease in erythrocyte deformability was accompanied by an increase of fluorescent product levels in red blood cells. The erythrocyte systems for antioxidative protection fail to control the oxidative burst after burning. This was due to the decreased concentration of vitamin E (a-tocopherol) and reduced glutathione (GSH) and the increased oxidized glutathione (GSSG) in red blood cells. Both alpha-tocopherol and GSH-deficiency potentiate the susceptibility of red blood cells to oxidative membrane injury, and decrease the deformability of thermally affected erythrocytes. Treatment with alpha-tocopherol (20 ml/kg b.m., immediately after thermal skin injury) prevented the vitamin E reduction and peroxidative membrane damage of erythrocytes and improved their deformability. These results provided strong evidence that the decreased erythrocyte deformability is partly related with alpha-tocopherol deficiency and oxidative membrane damage of red blood cells in the early post burn period.</p>\",\"PeriodicalId\":7035,\"journal\":{\"name\":\"Acta physiologica et pharmacologica Bulgarica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta physiologica et pharmacologica Bulgarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica et pharmacologica Bulgarica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
alpha-Tocopherol and reduced glutathione deficiency and decreased deformability of erythrocytes after thermal skin injury.
Burns are followed by oxidative changes in red blood cells, probably as a result of ischemia/reperfusion which takes place in the microvasculature of the injured tissues. This leads to a marked decrease in the erythrocyte deformability, one of the most prominent factors for haemorheological disorders in the early post-burn period. We found that at the 24 th hour after burn skin injury of rats, the decrease in erythrocyte deformability was accompanied by an increase of fluorescent product levels in red blood cells. The erythrocyte systems for antioxidative protection fail to control the oxidative burst after burning. This was due to the decreased concentration of vitamin E (a-tocopherol) and reduced glutathione (GSH) and the increased oxidized glutathione (GSSG) in red blood cells. Both alpha-tocopherol and GSH-deficiency potentiate the susceptibility of red blood cells to oxidative membrane injury, and decrease the deformability of thermally affected erythrocytes. Treatment with alpha-tocopherol (20 ml/kg b.m., immediately after thermal skin injury) prevented the vitamin E reduction and peroxidative membrane damage of erythrocytes and improved their deformability. These results provided strong evidence that the decreased erythrocyte deformability is partly related with alpha-tocopherol deficiency and oxidative membrane damage of red blood cells in the early post burn period.