Li Dandan , Xu Hai-Qun , Jiao Long , Jiang Hai-Long
{"title":"催化用金属-有机框架:现状、挑战和机遇","authors":"Li Dandan , Xu Hai-Qun , Jiao Long , Jiang Hai-Long","doi":"10.1016/j.enchem.2019.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), are a unique class of porous crystalline materials that are constructed by metal ions/clusters and organic ligands. The intriguing, numerous and tailorable structures as well as permanent porosity of MOFs make them very promising for a variety of potential applications, especially in catalysis. In this review, we systematically summarize the recent progress of MOF-based materials (including pristine MOFs, MOF composites, and MOF derivatives) for heterogeneous catalysis, photocatalysis and electrocatalysis, according to the category of active site origin. We clearly indicate the significant strengths (and also weaknesses) of the MOF-based materials, in reference to traditional catalysts, in catalytic studies. The challenges and opportunities in regard to the MOF-based materials for catalysis have also been critically discussed.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":22.2000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enchem.2019.100005","citationCount":"311","resultStr":"{\"title\":\"Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities\",\"authors\":\"Li Dandan , Xu Hai-Qun , Jiao Long , Jiang Hai-Long\",\"doi\":\"10.1016/j.enchem.2019.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), are a unique class of porous crystalline materials that are constructed by metal ions/clusters and organic ligands. The intriguing, numerous and tailorable structures as well as permanent porosity of MOFs make them very promising for a variety of potential applications, especially in catalysis. In this review, we systematically summarize the recent progress of MOF-based materials (including pristine MOFs, MOF composites, and MOF derivatives) for heterogeneous catalysis, photocatalysis and electrocatalysis, according to the category of active site origin. We clearly indicate the significant strengths (and also weaknesses) of the MOF-based materials, in reference to traditional catalysts, in catalytic studies. The challenges and opportunities in regard to the MOF-based materials for catalysis have also been critically discussed.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"1 1\",\"pages\":\"Article 100005\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.enchem.2019.100005\",\"citationCount\":\"311\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778019300053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778019300053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), are a unique class of porous crystalline materials that are constructed by metal ions/clusters and organic ligands. The intriguing, numerous and tailorable structures as well as permanent porosity of MOFs make them very promising for a variety of potential applications, especially in catalysis. In this review, we systematically summarize the recent progress of MOF-based materials (including pristine MOFs, MOF composites, and MOF derivatives) for heterogeneous catalysis, photocatalysis and electrocatalysis, according to the category of active site origin. We clearly indicate the significant strengths (and also weaknesses) of the MOF-based materials, in reference to traditional catalysts, in catalytic studies. The challenges and opportunities in regard to the MOF-based materials for catalysis have also been critically discussed.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage