{"title":"伴随简单肢体运动的脑内电位记录:癫痫患者的SEEG研究","authors":"Ivan Rektor , Jacques Louvel , Michel Lamarche","doi":"10.1016/S0013-4694(98)00073-X","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Objectives</strong>: Slow potentials appearing during simple repetitive acral limb movement were investigated. Twenty-six patients suffering from drug resistant partial epilepsies and explored with implanted intracerebral electrodes were examined using two protocols.<strong>Methods</strong>: In 18 patients, readiness potential (RP), in 13 patients contingent negative variation (CNV), and in 7 patients both protocols, were tested. The recordings from leads with evident pathological EEG activity were excluded from evaluation. The results concerning the slow potentials preceding the movements in RP and CNV protocols have already been published. <strong>Results</strong>: The movement-accompanying slow potentials (MASP) were polyphasic or monophasic, started before or during the movement. In the primary motor cortex they followed the pre-movement potentials depending on the protocol: in the RP paradigm they were present only contralateral to the movement, but were bilateral in the CNV protocol. In other areas they either followed the potentials preceding the movement, in some cases with opposite polarity, or they occurred alone. MASP was recorded in motor and supplementary motor, premotor and prefrontal, midtemporal, somatosensory, superior parietal and cingular cortices. The cingular cortex was heavily involved in the self-paced movements but rarely in the cued movements.<strong>Conclusion</strong>: The major involvement of the cingular gyrus contrasted with the absence of slow potentials in temporal limbic structures. MASP is evidently a heterogenic phenomenon. Its genesis could be involved in a spread of information through the relevant structures.</p></div>","PeriodicalId":72888,"journal":{"name":"Electroencephalography and clinical neurophysiology","volume":"107 4","pages":"Pages 277-286"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0013-4694(98)00073-X","citationCount":"41","resultStr":"{\"title\":\"Intracerebral recording of potentials accompanying simple limb movements: a SEEG study in epileptic patients\",\"authors\":\"Ivan Rektor , Jacques Louvel , Michel Lamarche\",\"doi\":\"10.1016/S0013-4694(98)00073-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>Objectives</strong>: Slow potentials appearing during simple repetitive acral limb movement were investigated. Twenty-six patients suffering from drug resistant partial epilepsies and explored with implanted intracerebral electrodes were examined using two protocols.<strong>Methods</strong>: In 18 patients, readiness potential (RP), in 13 patients contingent negative variation (CNV), and in 7 patients both protocols, were tested. The recordings from leads with evident pathological EEG activity were excluded from evaluation. The results concerning the slow potentials preceding the movements in RP and CNV protocols have already been published. <strong>Results</strong>: The movement-accompanying slow potentials (MASP) were polyphasic or monophasic, started before or during the movement. In the primary motor cortex they followed the pre-movement potentials depending on the protocol: in the RP paradigm they were present only contralateral to the movement, but were bilateral in the CNV protocol. In other areas they either followed the potentials preceding the movement, in some cases with opposite polarity, or they occurred alone. MASP was recorded in motor and supplementary motor, premotor and prefrontal, midtemporal, somatosensory, superior parietal and cingular cortices. The cingular cortex was heavily involved in the self-paced movements but rarely in the cued movements.<strong>Conclusion</strong>: The major involvement of the cingular gyrus contrasted with the absence of slow potentials in temporal limbic structures. MASP is evidently a heterogenic phenomenon. Its genesis could be involved in a spread of information through the relevant structures.</p></div>\",\"PeriodicalId\":72888,\"journal\":{\"name\":\"Electroencephalography and clinical neurophysiology\",\"volume\":\"107 4\",\"pages\":\"Pages 277-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0013-4694(98)00073-X\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and clinical neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001346949800073X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and clinical neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346949800073X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intracerebral recording of potentials accompanying simple limb movements: a SEEG study in epileptic patients
Objectives: Slow potentials appearing during simple repetitive acral limb movement were investigated. Twenty-six patients suffering from drug resistant partial epilepsies and explored with implanted intracerebral electrodes were examined using two protocols.Methods: In 18 patients, readiness potential (RP), in 13 patients contingent negative variation (CNV), and in 7 patients both protocols, were tested. The recordings from leads with evident pathological EEG activity were excluded from evaluation. The results concerning the slow potentials preceding the movements in RP and CNV protocols have already been published. Results: The movement-accompanying slow potentials (MASP) were polyphasic or monophasic, started before or during the movement. In the primary motor cortex they followed the pre-movement potentials depending on the protocol: in the RP paradigm they were present only contralateral to the movement, but were bilateral in the CNV protocol. In other areas they either followed the potentials preceding the movement, in some cases with opposite polarity, or they occurred alone. MASP was recorded in motor and supplementary motor, premotor and prefrontal, midtemporal, somatosensory, superior parietal and cingular cortices. The cingular cortex was heavily involved in the self-paced movements but rarely in the cued movements.Conclusion: The major involvement of the cingular gyrus contrasted with the absence of slow potentials in temporal limbic structures. MASP is evidently a heterogenic phenomenon. Its genesis could be involved in a spread of information through the relevant structures.