{"title":"截瘫患者的运动能力和脊髓功能恢复:临床和电生理评估","authors":"V Dietz, M Wirz, G Colombo, A Curt","doi":"10.1016/S0924-980X(98)00002-2","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recent studies have shown that a locomotor pattern can be induced and trained into paraplegic patients<span> under conditions of body unloading using a moving treadmill. The present study investigated the behaviour of the locomotor pattern and also the relationship of its development to the spontaneous recovery of spinal cord function assessed by clinical and electrophysiological (tibial nerve </span></span>somatosensory evoked potentials<span><span> and motor evoked potentials) examinations. The earliest time that spinal locomotor activity could be induced was when signs of spinal shock had disappeared. This activity was distinct from spinal stretch reflex activity. In complete and incomplete paraplegic patients an increase of </span>gastrocnemius<span> electromyographic activity occurred during the stance phase of a step cycle with daily locomotor training over the whole training period of 12 weeks. This was coincident with a significant decrease in body unloading. In contrast to this, neither clinical nor electrophysiological examination scores improved after the onset of training in both patient groups. Only in incomplete paraplegic patients was there an insignificant increase in sensory and motor scores obtained in the neurological examination<span> during the time period before onset of training. An improvement of locomotor function by training was also seen in patients with paraplegia due to a cauda lesion. Therefore, in patients with a spinal cord lesion training effects on muscles and tendons are present in addition to those on the spinal locomotor centres. The findings of this study may be relevant for future clinical treatment of paraplegic patients.</span></span></span></p></div>","PeriodicalId":100400,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","volume":"109 2","pages":"Pages 140-153"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0924-980X(98)00002-2","citationCount":"91","resultStr":"{\"title\":\"Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation\",\"authors\":\"V Dietz, M Wirz, G Colombo, A Curt\",\"doi\":\"10.1016/S0924-980X(98)00002-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Recent studies have shown that a locomotor pattern can be induced and trained into paraplegic patients<span> under conditions of body unloading using a moving treadmill. The present study investigated the behaviour of the locomotor pattern and also the relationship of its development to the spontaneous recovery of spinal cord function assessed by clinical and electrophysiological (tibial nerve </span></span>somatosensory evoked potentials<span><span> and motor evoked potentials) examinations. The earliest time that spinal locomotor activity could be induced was when signs of spinal shock had disappeared. This activity was distinct from spinal stretch reflex activity. In complete and incomplete paraplegic patients an increase of </span>gastrocnemius<span> electromyographic activity occurred during the stance phase of a step cycle with daily locomotor training over the whole training period of 12 weeks. This was coincident with a significant decrease in body unloading. In contrast to this, neither clinical nor electrophysiological examination scores improved after the onset of training in both patient groups. Only in incomplete paraplegic patients was there an insignificant increase in sensory and motor scores obtained in the neurological examination<span> during the time period before onset of training. An improvement of locomotor function by training was also seen in patients with paraplegia due to a cauda lesion. Therefore, in patients with a spinal cord lesion training effects on muscles and tendons are present in addition to those on the spinal locomotor centres. The findings of this study may be relevant for future clinical treatment of paraplegic patients.</span></span></span></p></div>\",\"PeriodicalId\":100400,\"journal\":{\"name\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"volume\":\"109 2\",\"pages\":\"Pages 140-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0924-980X(98)00002-2\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924980X98000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924980X98000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation
Recent studies have shown that a locomotor pattern can be induced and trained into paraplegic patients under conditions of body unloading using a moving treadmill. The present study investigated the behaviour of the locomotor pattern and also the relationship of its development to the spontaneous recovery of spinal cord function assessed by clinical and electrophysiological (tibial nerve somatosensory evoked potentials and motor evoked potentials) examinations. The earliest time that spinal locomotor activity could be induced was when signs of spinal shock had disappeared. This activity was distinct from spinal stretch reflex activity. In complete and incomplete paraplegic patients an increase of gastrocnemius electromyographic activity occurred during the stance phase of a step cycle with daily locomotor training over the whole training period of 12 weeks. This was coincident with a significant decrease in body unloading. In contrast to this, neither clinical nor electrophysiological examination scores improved after the onset of training in both patient groups. Only in incomplete paraplegic patients was there an insignificant increase in sensory and motor scores obtained in the neurological examination during the time period before onset of training. An improvement of locomotor function by training was also seen in patients with paraplegia due to a cauda lesion. Therefore, in patients with a spinal cord lesion training effects on muscles and tendons are present in addition to those on the spinal locomotor centres. The findings of this study may be relevant for future clinical treatment of paraplegic patients.