一个数据依赖的计算机算法检测肌肉活动的开始和偏移从肌电图记录

J.K. Leader III , J.R. Boston , C.A. Moore
{"title":"一个数据依赖的计算机算法检测肌肉活动的开始和偏移从肌电图记录","authors":"J.K. Leader III ,&nbsp;J.R. Boston ,&nbsp;C.A. Moore","doi":"10.1016/S0924-980X(97)00066-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes modifications to an algorithm presented by <span>Marple-Horvat and Gilbey (1992)</span>for identifying bursts of muscle activity in electromyographical (EMG) recordings. Our efforts to apply their algorithm to spontaneously moving infants and toddlers resulted in limited success. The modified algorithm makes several parameters dependent on the data being analyzed; these changes enabled it to analyze a variety of EMG recordings more effectively. The original algorithm had a success rate (correctly identified bursts) of 62.9% and combined error rate (number of insertions and deletions) of 73.0% when applied to an independent test data set. The modified algorithm displayed a success rate of 85.4% and combined error rate of 23.6%.</p></div>","PeriodicalId":100400,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","volume":"109 2","pages":"Pages 119-123"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0924-980X(97)00066-0","citationCount":"14","resultStr":"{\"title\":\"A data dependent computer algorithm for the detection of muscle activity onset and offset from EMG recordings\",\"authors\":\"J.K. Leader III ,&nbsp;J.R. Boston ,&nbsp;C.A. Moore\",\"doi\":\"10.1016/S0924-980X(97)00066-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes modifications to an algorithm presented by <span>Marple-Horvat and Gilbey (1992)</span>for identifying bursts of muscle activity in electromyographical (EMG) recordings. Our efforts to apply their algorithm to spontaneously moving infants and toddlers resulted in limited success. The modified algorithm makes several parameters dependent on the data being analyzed; these changes enabled it to analyze a variety of EMG recordings more effectively. The original algorithm had a success rate (correctly identified bursts) of 62.9% and combined error rate (number of insertions and deletions) of 73.0% when applied to an independent test data set. The modified algorithm displayed a success rate of 85.4% and combined error rate of 23.6%.</p></div>\",\"PeriodicalId\":100400,\"journal\":{\"name\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"volume\":\"109 2\",\"pages\":\"Pages 119-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0924-980X(97)00066-0\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924980X97000660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924980X97000660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文描述了对marpe - horvat和Gilbey(1992)提出的一种算法的修改,该算法用于识别肌电图(EMG)记录中的肌肉活动爆发。我们试图将他们的算法应用到自发移动的婴幼儿身上,结果收效甚微。改进后的算法使几个参数依赖于被分析的数据;这些变化使它能够更有效地分析各种肌电图记录。当应用于独立的测试数据集时,原始算法的成功率(正确识别的突发)为62.9%,组合错误率(插入和删除的数量)为73.0%。改进算法的准确率为85.4%,综合错误率为23.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data dependent computer algorithm for the detection of muscle activity onset and offset from EMG recordings

This paper describes modifications to an algorithm presented by Marple-Horvat and Gilbey (1992)for identifying bursts of muscle activity in electromyographical (EMG) recordings. Our efforts to apply their algorithm to spontaneously moving infants and toddlers resulted in limited success. The modified algorithm makes several parameters dependent on the data being analyzed; these changes enabled it to analyze a variety of EMG recordings more effectively. The original algorithm had a success rate (correctly identified bursts) of 62.9% and combined error rate (number of insertions and deletions) of 73.0% when applied to an independent test data set. The modified algorithm displayed a success rate of 85.4% and combined error rate of 23.6%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信