A Mesfioui, F Math, K Jmari, A El Hessni, M K Choulli, J L Davrainville
{"title":"安非他明和苯乙胺对大鼠嗅球肾小球层儿茶酚胺释放的影响。","authors":"A Mesfioui, F Math, K Jmari, A El Hessni, M K Choulli, J L Davrainville","doi":"10.1159/000014548","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, we have shown electrochemically that in the rat olfactory bulb (OB), extracellular dopamine (DA) was highest in the glomerular layer (GL), whereas extracellular noradrenaline (NA) appeared to be more uniformly distributed across layers. The GL catecholamine (CA) responses to amphetamine (AMPH) and phenylethylamine (PEA) were also characterized electrochemically using an in vivo model. Results of this investigation show that at a lower dose (1 mg/kg), PEA had no effect on CA release. In contrast, at a higher dose (10 mg/kg), it produced similar increases in either extracellular DA (17.5 +/- 7%) or extracellular NA (14 +/- 3%), and DA exhibited dose-independent increases to AMPH (93 +/- 8%: 1 mg/kg vs. 97 +/- 6%: 10 mg/kg) whereas NA exhibited dose-dependent increases to AMPH (24.5 +/- 6%: 1 mg/kg vs. 39 +/- 7%: 10 mg/kg). These data indicate that (i) PEA may increase CA release but less efficiently than AMPH. (ii) AMPH is more efficient on the DAergic than on the NAergic system since AMPH-induced DA release exceeded 2-4 times the AMPH-induced NA release.</p>","PeriodicalId":79565,"journal":{"name":"Biological signals and receptors","volume":"7 4","pages":"235-43"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000014548","citationCount":"14","resultStr":"{\"title\":\"Effects of amphetamine and phenylethylamine on catecholamine release in the glomerular layer of the rat olfactory bulb.\",\"authors\":\"A Mesfioui, F Math, K Jmari, A El Hessni, M K Choulli, J L Davrainville\",\"doi\":\"10.1159/000014548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present work, we have shown electrochemically that in the rat olfactory bulb (OB), extracellular dopamine (DA) was highest in the glomerular layer (GL), whereas extracellular noradrenaline (NA) appeared to be more uniformly distributed across layers. The GL catecholamine (CA) responses to amphetamine (AMPH) and phenylethylamine (PEA) were also characterized electrochemically using an in vivo model. Results of this investigation show that at a lower dose (1 mg/kg), PEA had no effect on CA release. In contrast, at a higher dose (10 mg/kg), it produced similar increases in either extracellular DA (17.5 +/- 7%) or extracellular NA (14 +/- 3%), and DA exhibited dose-independent increases to AMPH (93 +/- 8%: 1 mg/kg vs. 97 +/- 6%: 10 mg/kg) whereas NA exhibited dose-dependent increases to AMPH (24.5 +/- 6%: 1 mg/kg vs. 39 +/- 7%: 10 mg/kg). These data indicate that (i) PEA may increase CA release but less efficiently than AMPH. (ii) AMPH is more efficient on the DAergic than on the NAergic system since AMPH-induced DA release exceeded 2-4 times the AMPH-induced NA release.</p>\",\"PeriodicalId\":79565,\"journal\":{\"name\":\"Biological signals and receptors\",\"volume\":\"7 4\",\"pages\":\"235-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000014548\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological signals and receptors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000014548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals and receptors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000014548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of amphetamine and phenylethylamine on catecholamine release in the glomerular layer of the rat olfactory bulb.
In the present work, we have shown electrochemically that in the rat olfactory bulb (OB), extracellular dopamine (DA) was highest in the glomerular layer (GL), whereas extracellular noradrenaline (NA) appeared to be more uniformly distributed across layers. The GL catecholamine (CA) responses to amphetamine (AMPH) and phenylethylamine (PEA) were also characterized electrochemically using an in vivo model. Results of this investigation show that at a lower dose (1 mg/kg), PEA had no effect on CA release. In contrast, at a higher dose (10 mg/kg), it produced similar increases in either extracellular DA (17.5 +/- 7%) or extracellular NA (14 +/- 3%), and DA exhibited dose-independent increases to AMPH (93 +/- 8%: 1 mg/kg vs. 97 +/- 6%: 10 mg/kg) whereas NA exhibited dose-dependent increases to AMPH (24.5 +/- 6%: 1 mg/kg vs. 39 +/- 7%: 10 mg/kg). These data indicate that (i) PEA may increase CA release but less efficiently than AMPH. (ii) AMPH is more efficient on the DAergic than on the NAergic system since AMPH-induced DA release exceeded 2-4 times the AMPH-induced NA release.