分级缺镁对大鼠的病理生化影响。

J Vormann, T Günther, V Höllriegl, K Schümann
{"title":"分级缺镁对大鼠的病理生化影响。","authors":"J Vormann,&nbsp;T Günther,&nbsp;V Höllriegl,&nbsp;K Schümann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Severe Mg deficiency changed mineral homeostasis, induced membrane damage, increased lipid peroxidation and cytokine concentrations, and reduced immunocompetence. In order to investigate whether the pathobiochemical effects correlate directly with the degree of Mg deficiency or whether there might be a threshold with no detectable effects above, diets with 70, 110, 208, 330 and 850 ppm Mg were fed to growing Wistar rats. After feeding the diets for 0, 10, 20 and 30 days parameters of free radical action (malondialdehyde and vitamin E content), mineral content (Mg, Ca, Fe) in various tissues (liver, spleen, heart, kidney, muscle) and plasma parameters (Mg, Ca, Fe, alanine- and aspartate-aminotransferase) were measured. After 30 days 6-keto-prostaglandin F1 alpha, thromboxane B2, tumor necrosis factor-alpha, and immunoglobulins (IgG, IgM, IgA) were additionally analyzed. Tissue Mg content was either unchanged or only slightly reduced in severe Mg deficiency. Tissue Fe content rose when the extracellular Mg concentration was below 0.25 mM. There was a close positive correlation between tissue Fe and malondialdehyde content, and malondialdehyde was negatively correlated with vitamin E content. Below a threshold of about 0.25 mM plasma Mg concentration, transaminases increased in plasma. The same threshold could be observed for the increase of tissue Ca content, except in the kidney where calcifications were found already in mild Mg deficiency. Tumor necrosis factor-alpha and 6-keto-prostaglandin F1 alpha were increased when the plasma Mg concentration was below 0.15 mM, and thromboxane B2 was increased when plasma was lower than 0.25 mM. IgG and IgA were significantly reduced below 0.25 mM plasma Mg and IgM below 0.4 mM plasma Mg. Mild Mg deficiency, therefore, can be compensated and might not lead to pathological symptoms if not combined with other pathobiological conditions.</p>","PeriodicalId":23811,"journal":{"name":"Zeitschrift fur Ernahrungswissenschaft","volume":"37 Suppl 1 ","pages":"92-7"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathobiochemical effects of graded magnesium deficiency in rats.\",\"authors\":\"J Vormann,&nbsp;T Günther,&nbsp;V Höllriegl,&nbsp;K Schümann\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe Mg deficiency changed mineral homeostasis, induced membrane damage, increased lipid peroxidation and cytokine concentrations, and reduced immunocompetence. In order to investigate whether the pathobiochemical effects correlate directly with the degree of Mg deficiency or whether there might be a threshold with no detectable effects above, diets with 70, 110, 208, 330 and 850 ppm Mg were fed to growing Wistar rats. After feeding the diets for 0, 10, 20 and 30 days parameters of free radical action (malondialdehyde and vitamin E content), mineral content (Mg, Ca, Fe) in various tissues (liver, spleen, heart, kidney, muscle) and plasma parameters (Mg, Ca, Fe, alanine- and aspartate-aminotransferase) were measured. After 30 days 6-keto-prostaglandin F1 alpha, thromboxane B2, tumor necrosis factor-alpha, and immunoglobulins (IgG, IgM, IgA) were additionally analyzed. Tissue Mg content was either unchanged or only slightly reduced in severe Mg deficiency. Tissue Fe content rose when the extracellular Mg concentration was below 0.25 mM. There was a close positive correlation between tissue Fe and malondialdehyde content, and malondialdehyde was negatively correlated with vitamin E content. Below a threshold of about 0.25 mM plasma Mg concentration, transaminases increased in plasma. The same threshold could be observed for the increase of tissue Ca content, except in the kidney where calcifications were found already in mild Mg deficiency. Tumor necrosis factor-alpha and 6-keto-prostaglandin F1 alpha were increased when the plasma Mg concentration was below 0.15 mM, and thromboxane B2 was increased when plasma was lower than 0.25 mM. IgG and IgA were significantly reduced below 0.25 mM plasma Mg and IgM below 0.4 mM plasma Mg. Mild Mg deficiency, therefore, can be compensated and might not lead to pathological symptoms if not combined with other pathobiological conditions.</p>\",\"PeriodicalId\":23811,\"journal\":{\"name\":\"Zeitschrift fur Ernahrungswissenschaft\",\"volume\":\"37 Suppl 1 \",\"pages\":\"92-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Ernahrungswissenschaft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Ernahrungswissenschaft","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

严重缺镁会改变体内矿物质平衡,引起细胞膜损伤,增加脂质过氧化和细胞因子浓度,降低免疫能力。为了研究病理生化效应是否与Mg缺乏程度直接相关,或者是否存在一个阈值,在此阈值上没有可检测到的影响,我们给生长中的Wistar大鼠喂食了Mg含量为70、110、208、330和850 ppm的饲料。饲喂0、10、20和30 d后,测定各组组织(肝、脾、心、肾、肌肉)中自由基活性(丙二醛和维生素E含量)、矿物质含量(Mg、Ca、Fe)和血浆参数(Mg、Ca、Fe、丙氨酸和天冬氨酸转氨酶)。30天后,进一步分析6-酮-前列腺素F1 α、血栓素B2、肿瘤坏死因子α和免疫球蛋白(IgG、IgM、IgA)。重度缺镁组组织Mg含量没有变化或略有降低。当胞外Mg浓度低于0.25 mM时,组织铁含量升高。组织铁与丙二醛含量呈密切正相关,丙二醛与维生素E含量呈负相关。低于0.25 mM血浆Mg浓度阈值时,血浆转氨酶升高。同样的阈值可以观察到组织钙含量的增加,除了在肾脏中,在轻度镁缺乏中已经发现钙化。血浆Mg浓度低于0.15 mM时,肿瘤坏死因子α和6-酮前列腺素F1 α升高,血浆Mg浓度低于0.25 mM时,血栓素B2升高,血浆Mg浓度低于0.25 mM时,IgG和IgA显著降低,血浆Mg浓度低于0.4 mM时,IgM显著降低。因此,轻度镁缺乏可以得到补偿,如果不合并其他病理生物学条件,可能不会导致病理症状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathobiochemical effects of graded magnesium deficiency in rats.

Severe Mg deficiency changed mineral homeostasis, induced membrane damage, increased lipid peroxidation and cytokine concentrations, and reduced immunocompetence. In order to investigate whether the pathobiochemical effects correlate directly with the degree of Mg deficiency or whether there might be a threshold with no detectable effects above, diets with 70, 110, 208, 330 and 850 ppm Mg were fed to growing Wistar rats. After feeding the diets for 0, 10, 20 and 30 days parameters of free radical action (malondialdehyde and vitamin E content), mineral content (Mg, Ca, Fe) in various tissues (liver, spleen, heart, kidney, muscle) and plasma parameters (Mg, Ca, Fe, alanine- and aspartate-aminotransferase) were measured. After 30 days 6-keto-prostaglandin F1 alpha, thromboxane B2, tumor necrosis factor-alpha, and immunoglobulins (IgG, IgM, IgA) were additionally analyzed. Tissue Mg content was either unchanged or only slightly reduced in severe Mg deficiency. Tissue Fe content rose when the extracellular Mg concentration was below 0.25 mM. There was a close positive correlation between tissue Fe and malondialdehyde content, and malondialdehyde was negatively correlated with vitamin E content. Below a threshold of about 0.25 mM plasma Mg concentration, transaminases increased in plasma. The same threshold could be observed for the increase of tissue Ca content, except in the kidney where calcifications were found already in mild Mg deficiency. Tumor necrosis factor-alpha and 6-keto-prostaglandin F1 alpha were increased when the plasma Mg concentration was below 0.15 mM, and thromboxane B2 was increased when plasma was lower than 0.25 mM. IgG and IgA were significantly reduced below 0.25 mM plasma Mg and IgM below 0.4 mM plasma Mg. Mild Mg deficiency, therefore, can be compensated and might not lead to pathological symptoms if not combined with other pathobiological conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信