{"title":"酿酒酵母S期进入的细胞周期调控。","authors":"S Piatti","doi":"10.1007/978-1-4615-5371-7_12","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic DNA replication is restricted to a narrow window of the cell cycle called S phase, and occurs once and only once during each cell cycle. The combination of genetic and biochemical approaches in the budding yeast Saccharomyces cerevisiae has proven extremely helpful for studying the cell cycle regulation of S phase entry. This review will try to summarise the most recent discoveries which led to a new model to explain how entry into S phase is regulated in eukaryotic cells.</p>","PeriodicalId":79529,"journal":{"name":"Progress in cell cycle research","volume":"3 ","pages":"143-56"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-1-4615-5371-7_12","citationCount":"9","resultStr":"{\"title\":\"Cell cycle regulation of S phase entry in Saccharomyces cerevisiae.\",\"authors\":\"S Piatti\",\"doi\":\"10.1007/978-1-4615-5371-7_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic DNA replication is restricted to a narrow window of the cell cycle called S phase, and occurs once and only once during each cell cycle. The combination of genetic and biochemical approaches in the budding yeast Saccharomyces cerevisiae has proven extremely helpful for studying the cell cycle regulation of S phase entry. This review will try to summarise the most recent discoveries which led to a new model to explain how entry into S phase is regulated in eukaryotic cells.</p>\",\"PeriodicalId\":79529,\"journal\":{\"name\":\"Progress in cell cycle research\",\"volume\":\"3 \",\"pages\":\"143-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-1-4615-5371-7_12\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in cell cycle research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-4615-5371-7_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in cell cycle research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-4615-5371-7_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell cycle regulation of S phase entry in Saccharomyces cerevisiae.
Eukaryotic DNA replication is restricted to a narrow window of the cell cycle called S phase, and occurs once and only once during each cell cycle. The combination of genetic and biochemical approaches in the budding yeast Saccharomyces cerevisiae has proven extremely helpful for studying the cell cycle regulation of S phase entry. This review will try to summarise the most recent discoveries which led to a new model to explain how entry into S phase is regulated in eukaryotic cells.