{"title":"环境温度对饲喂不同水平膳食纤维或蛋白质大鼠十二指肠黏膜和肝脏体外瓦阿巴因敏感呼吸体内能量消耗的影响","authors":"H Jørgensen, X Q Zhao","doi":"10.1007/BF01617798","DOIUrl":null,"url":null,"abstract":"<p><p>Seventy two Wistar rats were used in two repeat studies to investigate the effect of environmental temperature (18 degrees C or 28 degrees C) and increasing levels of dietary fibre (low, 68 g/kg DM; medium 110 g/kg DM; high, 157 g/kg DM) or protein (low, 91 g/kg DM; medium, 171 g/kg DM; high, 262 g/kg DM) on digestive tract, visceral organ size, energy metabolism, and respiration attributable to Na+,K(+)-ATPase activity in duodenal mucosa and liver. Total and ouabain-sensitive (a measure of Na+,K(+)-ATPase activity) O2 consumption in vitro of tissues were measured polarographically using a Clark-style YSI biological O2 monitor. Whole body heat production (in vivo) was measured using open-circuit respiration chambers. The weight of the visceral organs was higher in rats housed at 18 degrees C than at 28 degrees C. The empty weight of the small intestine, caecum, and colon increased as the level of dietary fibre increased (P 0.05). Heat production as a proportion of metabolizable energy was higher (P < 0.05) at 18 degrees C than at 28 degrees C in the first experiment but this difference was significant in the second experiment. Rats fed the low protein diet had significantly higher (P > 0.05) heat production than those fed medium or high protein diets. Compared to 28 degrees C, environmental temperature of 18 degrees C caused an increased total and ouabain-sensitive O2 consumption in duodenal mucosa. There was no significant effect of environmental temperature on total and ouabain-sensitive O2 consumption in the liver. However, ouabain-sensitive O2 consumption in liver was significantly higher (P 0.05) when rats were fed a low protein diet compared to the medium or high protein diet. Total and ouabain-sensitive O2 consumption increased in duodenal mucosa of rats fed low level of dietary fibre compared to the medium or high dietary fibre diets. The in vitro results corresponded with the whole animal energy expenditure and O2 consumption in vivo.</p>","PeriodicalId":23811,"journal":{"name":"Zeitschrift fur Ernahrungswissenschaft","volume":"36 4","pages":"278-84"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01617798","citationCount":"2","resultStr":"{\"title\":\"Influence of environmental temperature on in vivo energy expenditure in vitro ouabain-sensitive respiration in duodenal mucosa and liver in rats fed different levels of dietary fiber or protein.\",\"authors\":\"H Jørgensen, X Q Zhao\",\"doi\":\"10.1007/BF01617798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seventy two Wistar rats were used in two repeat studies to investigate the effect of environmental temperature (18 degrees C or 28 degrees C) and increasing levels of dietary fibre (low, 68 g/kg DM; medium 110 g/kg DM; high, 157 g/kg DM) or protein (low, 91 g/kg DM; medium, 171 g/kg DM; high, 262 g/kg DM) on digestive tract, visceral organ size, energy metabolism, and respiration attributable to Na+,K(+)-ATPase activity in duodenal mucosa and liver. Total and ouabain-sensitive (a measure of Na+,K(+)-ATPase activity) O2 consumption in vitro of tissues were measured polarographically using a Clark-style YSI biological O2 monitor. Whole body heat production (in vivo) was measured using open-circuit respiration chambers. The weight of the visceral organs was higher in rats housed at 18 degrees C than at 28 degrees C. The empty weight of the small intestine, caecum, and colon increased as the level of dietary fibre increased (P 0.05). Heat production as a proportion of metabolizable energy was higher (P < 0.05) at 18 degrees C than at 28 degrees C in the first experiment but this difference was significant in the second experiment. Rats fed the low protein diet had significantly higher (P > 0.05) heat production than those fed medium or high protein diets. Compared to 28 degrees C, environmental temperature of 18 degrees C caused an increased total and ouabain-sensitive O2 consumption in duodenal mucosa. There was no significant effect of environmental temperature on total and ouabain-sensitive O2 consumption in the liver. However, ouabain-sensitive O2 consumption in liver was significantly higher (P 0.05) when rats were fed a low protein diet compared to the medium or high protein diet. Total and ouabain-sensitive O2 consumption increased in duodenal mucosa of rats fed low level of dietary fibre compared to the medium or high dietary fibre diets. The in vitro results corresponded with the whole animal energy expenditure and O2 consumption in vivo.</p>\",\"PeriodicalId\":23811,\"journal\":{\"name\":\"Zeitschrift fur Ernahrungswissenschaft\",\"volume\":\"36 4\",\"pages\":\"278-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF01617798\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Ernahrungswissenschaft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF01617798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Ernahrungswissenschaft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01617798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of environmental temperature on in vivo energy expenditure in vitro ouabain-sensitive respiration in duodenal mucosa and liver in rats fed different levels of dietary fiber or protein.
Seventy two Wistar rats were used in two repeat studies to investigate the effect of environmental temperature (18 degrees C or 28 degrees C) and increasing levels of dietary fibre (low, 68 g/kg DM; medium 110 g/kg DM; high, 157 g/kg DM) or protein (low, 91 g/kg DM; medium, 171 g/kg DM; high, 262 g/kg DM) on digestive tract, visceral organ size, energy metabolism, and respiration attributable to Na+,K(+)-ATPase activity in duodenal mucosa and liver. Total and ouabain-sensitive (a measure of Na+,K(+)-ATPase activity) O2 consumption in vitro of tissues were measured polarographically using a Clark-style YSI biological O2 monitor. Whole body heat production (in vivo) was measured using open-circuit respiration chambers. The weight of the visceral organs was higher in rats housed at 18 degrees C than at 28 degrees C. The empty weight of the small intestine, caecum, and colon increased as the level of dietary fibre increased (P 0.05). Heat production as a proportion of metabolizable energy was higher (P < 0.05) at 18 degrees C than at 28 degrees C in the first experiment but this difference was significant in the second experiment. Rats fed the low protein diet had significantly higher (P > 0.05) heat production than those fed medium or high protein diets. Compared to 28 degrees C, environmental temperature of 18 degrees C caused an increased total and ouabain-sensitive O2 consumption in duodenal mucosa. There was no significant effect of environmental temperature on total and ouabain-sensitive O2 consumption in the liver. However, ouabain-sensitive O2 consumption in liver was significantly higher (P 0.05) when rats were fed a low protein diet compared to the medium or high protein diet. Total and ouabain-sensitive O2 consumption increased in duodenal mucosa of rats fed low level of dietary fibre compared to the medium or high dietary fibre diets. The in vitro results corresponded with the whole animal energy expenditure and O2 consumption in vivo.