{"title":"不同大小的h反射对低频抑制表现出不同的敏感性","authors":"M K. Floeter, A F. Kohn","doi":"10.1016/S0924-980X(97)00032-5","DOIUrl":null,"url":null,"abstract":"<div><p>The amplitude of the H-reflex declines when activated repetitively. The magnitude of decline is greater when the amplitude of the H-reflex is small. To explore whether pre- or postsynaptic factors contribute to the differences observed in H-reflexes of different sizes, changes in the amplitude of H-reflexes of different sizes were measured during a train of stimulation in 10 normal subjects. Amplitudes of different sizes were obtained using differing stimulus intensities or during superimposed contraction, two manipulations which differently affect the number of active afferents and the excitation of the motoneuron pool. Small amplitude H-reflexes depressed to a lower plateau than larger H-reflexes and superimposed contraction did not alleviate the depression during each train. Nearly all the decline in larger amplitude H-reflexes occurred in a component that was in common with smaller amplitude H-reflexes. This suggests that the depressibility of the earliest activated units is greater than later activated units in H-reflexes and that the magnitude of decline is affected by prior activity as well as size.</p></div>","PeriodicalId":100400,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","volume":"105 6","pages":"Pages 470-475"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0924-980X(97)00032-5","citationCount":"52","resultStr":"{\"title\":\"H-reflexes of different sizes exhibit differential sensitivity to low frequency depression\",\"authors\":\"M K. Floeter, A F. Kohn\",\"doi\":\"10.1016/S0924-980X(97)00032-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The amplitude of the H-reflex declines when activated repetitively. The magnitude of decline is greater when the amplitude of the H-reflex is small. To explore whether pre- or postsynaptic factors contribute to the differences observed in H-reflexes of different sizes, changes in the amplitude of H-reflexes of different sizes were measured during a train of stimulation in 10 normal subjects. Amplitudes of different sizes were obtained using differing stimulus intensities or during superimposed contraction, two manipulations which differently affect the number of active afferents and the excitation of the motoneuron pool. Small amplitude H-reflexes depressed to a lower plateau than larger H-reflexes and superimposed contraction did not alleviate the depression during each train. Nearly all the decline in larger amplitude H-reflexes occurred in a component that was in common with smaller amplitude H-reflexes. This suggests that the depressibility of the earliest activated units is greater than later activated units in H-reflexes and that the magnitude of decline is affected by prior activity as well as size.</p></div>\",\"PeriodicalId\":100400,\"journal\":{\"name\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"volume\":\"105 6\",\"pages\":\"Pages 470-475\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0924-980X(97)00032-5\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924980X97000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924980X97000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H-reflexes of different sizes exhibit differential sensitivity to low frequency depression
The amplitude of the H-reflex declines when activated repetitively. The magnitude of decline is greater when the amplitude of the H-reflex is small. To explore whether pre- or postsynaptic factors contribute to the differences observed in H-reflexes of different sizes, changes in the amplitude of H-reflexes of different sizes were measured during a train of stimulation in 10 normal subjects. Amplitudes of different sizes were obtained using differing stimulus intensities or during superimposed contraction, two manipulations which differently affect the number of active afferents and the excitation of the motoneuron pool. Small amplitude H-reflexes depressed to a lower plateau than larger H-reflexes and superimposed contraction did not alleviate the depression during each train. Nearly all the decline in larger amplitude H-reflexes occurred in a component that was in common with smaller amplitude H-reflexes. This suggests that the depressibility of the earliest activated units is greater than later activated units in H-reflexes and that the magnitude of decline is affected by prior activity as well as size.