利用数据挖掘根据患者临床特征来描述DNA突变。

S Evans, S J Lemon, C Deters, R M Fusaro, C Durham, C Snyder, H T Lynch
{"title":"利用数据挖掘根据患者临床特征来描述DNA突变。","authors":"S Evans,&nbsp;S J Lemon,&nbsp;C Deters,&nbsp;R M Fusaro,&nbsp;C Durham,&nbsp;C Snyder,&nbsp;H T Lynch","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or \"true\" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or \"false\" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.</p>","PeriodicalId":79455,"journal":{"name":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","volume":" ","pages":"253-7"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233315/pdf/procamiaafs00001-0291.pdf","citationCount":"0","resultStr":"{\"title\":\"Using data mining to characterize DNA mutations by patient clinical features.\",\"authors\":\"S Evans,&nbsp;S J Lemon,&nbsp;C Deters,&nbsp;R M Fusaro,&nbsp;C Durham,&nbsp;C Snyder,&nbsp;H T Lynch\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or \\\"true\\\" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or \\\"false\\\" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.</p>\",\"PeriodicalId\":79455,\"journal\":{\"name\":\"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium\",\"volume\":\" \",\"pages\":\"253-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233315/pdf/procamiaafs00001-0291.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大多数遗传性癌症综合征中,寻找基因内各种基因突变(基因型)与患者临床癌症史(表型)之间的对应关系是具有挑战性的;迄今为止,在特定的DNA基因内突变和相应的癌症类型之间很少有临床意义的相关性。为了确定可能的基因型和表型相关性,我们评估了数据挖掘方法的应用,即使用基因突变阳性患者的临床癌症病史来定义特定DNA基因内突变的有效或“真实”模式。没有相同肿瘤基因内突变的患者的临床病史被标记为不正确或“错误”模式。数据挖掘技术的结果为构成临床特征的真实病例提供了预测基因内突变的特征规则。一些最初的结果推导出了文献中已经独立已知的相关性,增加了使用这种方法方法的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using data mining to characterize DNA mutations by patient clinical features.

In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or "true" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or "false" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信