{"title":"[用函数代数方法重建计算机断层图像]。","authors":"M Bradaczek, H Bradaczek","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed presentation of the process for calculating computed tomograms from the measured data by means of functional algebra is given and an attempt is made to demonstrate the relationships to those inexperienced in mathematics. Suggestions are also made to the manufacturers for improving tomography software although the authors cannot exclude the possibility that some of the recommendations may have already been realized. An interpolation in Fourier space to right-angled coordinates was not employed so that additional computer time and errors resulting from the interpolation are avoided. The savings in calculation time can only be estimated but should amount to about 25%. The error-correction calculation is merely a suggestion since it depends considerably on the apparatus used. Functional algebra is introduced here because it is not so well known but does provide appreciable simplifications in comparison to an explicit presentation. Didactic reasons as well as the possibility for reducing calculation time provided the foundation for this work.</p>","PeriodicalId":76986,"journal":{"name":"Aktuelle Radiologie","volume":"7 4","pages":"222-7"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Image reconstruction of computerized tomography pictures using functional algebra].\",\"authors\":\"M Bradaczek, H Bradaczek\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A detailed presentation of the process for calculating computed tomograms from the measured data by means of functional algebra is given and an attempt is made to demonstrate the relationships to those inexperienced in mathematics. Suggestions are also made to the manufacturers for improving tomography software although the authors cannot exclude the possibility that some of the recommendations may have already been realized. An interpolation in Fourier space to right-angled coordinates was not employed so that additional computer time and errors resulting from the interpolation are avoided. The savings in calculation time can only be estimated but should amount to about 25%. The error-correction calculation is merely a suggestion since it depends considerably on the apparatus used. Functional algebra is introduced here because it is not so well known but does provide appreciable simplifications in comparison to an explicit presentation. Didactic reasons as well as the possibility for reducing calculation time provided the foundation for this work.</p>\",\"PeriodicalId\":76986,\"journal\":{\"name\":\"Aktuelle Radiologie\",\"volume\":\"7 4\",\"pages\":\"222-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aktuelle Radiologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aktuelle Radiologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Image reconstruction of computerized tomography pictures using functional algebra].
A detailed presentation of the process for calculating computed tomograms from the measured data by means of functional algebra is given and an attempt is made to demonstrate the relationships to those inexperienced in mathematics. Suggestions are also made to the manufacturers for improving tomography software although the authors cannot exclude the possibility that some of the recommendations may have already been realized. An interpolation in Fourier space to right-angled coordinates was not employed so that additional computer time and errors resulting from the interpolation are avoided. The savings in calculation time can only be estimated but should amount to about 25%. The error-correction calculation is merely a suggestion since it depends considerably on the apparatus used. Functional algebra is introduced here because it is not so well known but does provide appreciable simplifications in comparison to an explicit presentation. Didactic reasons as well as the possibility for reducing calculation time provided the foundation for this work.