Priyanka Verma , Yasutaka Kuwahara , Kohsuke Mori , Robert Raja , Hiromi Yamashita
{"title":"建立用于清洁能源的新型等离子体纳米结构的结构-性能关系的新见解","authors":"Priyanka Verma , Yasutaka Kuwahara , Kohsuke Mori , Robert Raja , Hiromi Yamashita","doi":"10.1016/j.enchem.2022.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Plasmonic nanostructures have provided unique opportunities for harvesting solar energy to facilitate various chemical reactions. In the past decade, localized surface plasmon resonance (LSPR) has been extensively explored in catalysis to increase the activity and selectivity of chemical transformation reactions under mild reaction conditions, however, they are still subjected to many challenges in terms of lower efficiency, stability and reaction mechanisms under light irradiation conditions. There have been numerous research efforts in exploring the catalytic trends, mechanisms, challenges and applications in plasmonic catalysis. Several cutting-edge characterization techniques (UV-vis, surface voltage spectroscopy, SERS, photoluminescence, photocurrent measurements and theoretical simulations) have been employed to characterize and establish the structure-property relationship of noble metal-based plasmonic hybrid nanostructures. In this review, we have attempted to correlate the operando techniques to understand the structural details and their plasmonic catalytic activities in emerging applications, hydrogen generation and CO<sub>2</sub> reduction reactions.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"4 1","pages":"Article 100070"},"PeriodicalIF":22.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications\",\"authors\":\"Priyanka Verma , Yasutaka Kuwahara , Kohsuke Mori , Robert Raja , Hiromi Yamashita\",\"doi\":\"10.1016/j.enchem.2022.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasmonic nanostructures have provided unique opportunities for harvesting solar energy to facilitate various chemical reactions. In the past decade, localized surface plasmon resonance (LSPR) has been extensively explored in catalysis to increase the activity and selectivity of chemical transformation reactions under mild reaction conditions, however, they are still subjected to many challenges in terms of lower efficiency, stability and reaction mechanisms under light irradiation conditions. There have been numerous research efforts in exploring the catalytic trends, mechanisms, challenges and applications in plasmonic catalysis. Several cutting-edge characterization techniques (UV-vis, surface voltage spectroscopy, SERS, photoluminescence, photocurrent measurements and theoretical simulations) have been employed to characterize and establish the structure-property relationship of noble metal-based plasmonic hybrid nanostructures. In this review, we have attempted to correlate the operando techniques to understand the structural details and their plasmonic catalytic activities in emerging applications, hydrogen generation and CO<sub>2</sub> reduction reactions.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"4 1\",\"pages\":\"Article 100070\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778022000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778022000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications
Plasmonic nanostructures have provided unique opportunities for harvesting solar energy to facilitate various chemical reactions. In the past decade, localized surface plasmon resonance (LSPR) has been extensively explored in catalysis to increase the activity and selectivity of chemical transformation reactions under mild reaction conditions, however, they are still subjected to many challenges in terms of lower efficiency, stability and reaction mechanisms under light irradiation conditions. There have been numerous research efforts in exploring the catalytic trends, mechanisms, challenges and applications in plasmonic catalysis. Several cutting-edge characterization techniques (UV-vis, surface voltage spectroscopy, SERS, photoluminescence, photocurrent measurements and theoretical simulations) have been employed to characterize and establish the structure-property relationship of noble metal-based plasmonic hybrid nanostructures. In this review, we have attempted to correlate the operando techniques to understand the structural details and their plasmonic catalytic activities in emerging applications, hydrogen generation and CO2 reduction reactions.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage