{"title":"电浆准晶体","authors":"Venu Gopal Achanta","doi":"10.1016/j.pquantelec.2014.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Plasmonic quasicrystals consisting of quasi-periodic metal–dielectric patterns offer several advantages compared to the periodic patterns or plasmonic crystals. This paper reviews the present status in theoretical design, modeling, fabrication and basic and applied results on plasmonic quasicrystals. In addition to the current status, possible future prospects of plasmonic quasicrystals are also discussed.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"39 ","pages":"Pages 1-23"},"PeriodicalIF":7.4000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2014.12.002","citationCount":"0","resultStr":"{\"title\":\"Plasmonic quasicrystals\",\"authors\":\"Venu Gopal Achanta\",\"doi\":\"10.1016/j.pquantelec.2014.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasmonic quasicrystals consisting of quasi-periodic metal–dielectric patterns offer several advantages compared to the periodic patterns or plasmonic crystals. This paper reviews the present status in theoretical design, modeling, fabrication and basic and applied results on plasmonic quasicrystals. In addition to the current status, possible future prospects of plasmonic quasicrystals are also discussed.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"39 \",\"pages\":\"Pages 1-23\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2014.12.002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672714000585\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672714000585","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Plasmonic quasicrystals consisting of quasi-periodic metal–dielectric patterns offer several advantages compared to the periodic patterns or plasmonic crystals. This paper reviews the present status in theoretical design, modeling, fabrication and basic and applied results on plasmonic quasicrystals. In addition to the current status, possible future prospects of plasmonic quasicrystals are also discussed.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.