Z Pancer, J Leuck, B Rinkevich, R Steffen, I Müller, W E Müller
{"title":"尾脊索动物Botryllus schlosseri阴离子胰蛋白酶原基因的克隆及序列分析。","authors":"Z Pancer, J Leuck, B Rinkevich, R Steffen, I Müller, W E Müller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Botryllus schlosseri is a colonial marine invertebrate that belongs to the subphylum Urochordata. Previously we analyzed the activity of a serine protease in this species, and cloned a tunicate chymotrypsin-like molecule. In the present study we further analyzed the protease activity of this animal, and found biochemical evidence also for specific trypsin-like activity. Subsequently we utilized a degenerate polymerase chain reaction (PCR) primer to clone two B. schlosseri cDNAs coding for two different putative trypsinogens, each 243 amino acids long, that differ within the coding region in 42 amino acids and 99 nucleotides. Both clones feature the characteristics of animal anionic trypsinogens. Sequence analysis of the tunicate putative trypsinogens revealed the invertebrate characteristics of three disulfide bridges, and higher similarity to invertebrate than to vertebrate trypsinogens. We therefore propose that the typical characteristics of vertebrate trypsinogens evolved after the divergence of Urochordates and Cephalochordates.</p>","PeriodicalId":77273,"journal":{"name":"Molecular marine biology and biotechnology","volume":"5 4","pages":"326-33"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular cloning and sequence analysis of two cDNAs coding for putative anionic trypsinogens from the colonial Urochordate Botryllus schlosseri (Ascidiacea).\",\"authors\":\"Z Pancer, J Leuck, B Rinkevich, R Steffen, I Müller, W E Müller\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botryllus schlosseri is a colonial marine invertebrate that belongs to the subphylum Urochordata. Previously we analyzed the activity of a serine protease in this species, and cloned a tunicate chymotrypsin-like molecule. In the present study we further analyzed the protease activity of this animal, and found biochemical evidence also for specific trypsin-like activity. Subsequently we utilized a degenerate polymerase chain reaction (PCR) primer to clone two B. schlosseri cDNAs coding for two different putative trypsinogens, each 243 amino acids long, that differ within the coding region in 42 amino acids and 99 nucleotides. Both clones feature the characteristics of animal anionic trypsinogens. Sequence analysis of the tunicate putative trypsinogens revealed the invertebrate characteristics of three disulfide bridges, and higher similarity to invertebrate than to vertebrate trypsinogens. We therefore propose that the typical characteristics of vertebrate trypsinogens evolved after the divergence of Urochordates and Cephalochordates.</p>\",\"PeriodicalId\":77273,\"journal\":{\"name\":\"Molecular marine biology and biotechnology\",\"volume\":\"5 4\",\"pages\":\"326-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular marine biology and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular marine biology and biotechnology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular cloning and sequence analysis of two cDNAs coding for putative anionic trypsinogens from the colonial Urochordate Botryllus schlosseri (Ascidiacea).
Botryllus schlosseri is a colonial marine invertebrate that belongs to the subphylum Urochordata. Previously we analyzed the activity of a serine protease in this species, and cloned a tunicate chymotrypsin-like molecule. In the present study we further analyzed the protease activity of this animal, and found biochemical evidence also for specific trypsin-like activity. Subsequently we utilized a degenerate polymerase chain reaction (PCR) primer to clone two B. schlosseri cDNAs coding for two different putative trypsinogens, each 243 amino acids long, that differ within the coding region in 42 amino acids and 99 nucleotides. Both clones feature the characteristics of animal anionic trypsinogens. Sequence analysis of the tunicate putative trypsinogens revealed the invertebrate characteristics of three disulfide bridges, and higher similarity to invertebrate than to vertebrate trypsinogens. We therefore propose that the typical characteristics of vertebrate trypsinogens evolved after the divergence of Urochordates and Cephalochordates.