{"title":"巨结肠突变影响其胞外结构域的ret功能障碍机制。","authors":"T Iwashita, H Murakami, N Asai, M Takahashi","doi":"10.1093/hmg/5.10.1577","DOIUrl":null,"url":null,"abstract":"<p><p>Hirschsprung disease (HSCR) is a congenital disorder associated with the absence of intrinsic ganglion cells in the distal gastrointestinal tract. Recently, many missense, nonsense and frameshift mutations of the ret proto-oncogene were found in familial and sporadic cases of HSCR. Consistent with the view that the HSCR phenotype is the result of inactivation of Ret, the missense mutations detected in the tyrosine kinase domain were demonstrated to result in a marked decrease of the kinase activity of Ret. However, the effects of missense mutations found in the extracellular domain remain unknown. We now report that five mutations in the extracellular domain examined inhibit transport of the Ret protein to the plasma membrane. As a consequence, they significantly decreased the transforming activity of Ret with multiple endocrine neoplasia (MEN) 2A mutation for which cell surface expression is required. Our results also demonstrated that long segment HSCR mutations more severely impair transport of Ret to the plasma membrane than a short segment HSCR mutation, suggesting that the level of its cell surface expression may correlate to the HSCR phenotype.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":"5 10","pages":"1577-80"},"PeriodicalIF":3.1000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/hmg/5.10.1577","citationCount":"107","resultStr":"{\"title\":\"Mechanism of ret dysfunction by Hirschsprung mutations affecting its extracellular domain.\",\"authors\":\"T Iwashita, H Murakami, N Asai, M Takahashi\",\"doi\":\"10.1093/hmg/5.10.1577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hirschsprung disease (HSCR) is a congenital disorder associated with the absence of intrinsic ganglion cells in the distal gastrointestinal tract. Recently, many missense, nonsense and frameshift mutations of the ret proto-oncogene were found in familial and sporadic cases of HSCR. Consistent with the view that the HSCR phenotype is the result of inactivation of Ret, the missense mutations detected in the tyrosine kinase domain were demonstrated to result in a marked decrease of the kinase activity of Ret. However, the effects of missense mutations found in the extracellular domain remain unknown. We now report that five mutations in the extracellular domain examined inhibit transport of the Ret protein to the plasma membrane. As a consequence, they significantly decreased the transforming activity of Ret with multiple endocrine neoplasia (MEN) 2A mutation for which cell surface expression is required. Our results also demonstrated that long segment HSCR mutations more severely impair transport of Ret to the plasma membrane than a short segment HSCR mutation, suggesting that the level of its cell surface expression may correlate to the HSCR phenotype.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\"5 10\",\"pages\":\"1577-80\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/hmg/5.10.1577\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/5.10.1577\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/5.10.1577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanism of ret dysfunction by Hirschsprung mutations affecting its extracellular domain.
Hirschsprung disease (HSCR) is a congenital disorder associated with the absence of intrinsic ganglion cells in the distal gastrointestinal tract. Recently, many missense, nonsense and frameshift mutations of the ret proto-oncogene were found in familial and sporadic cases of HSCR. Consistent with the view that the HSCR phenotype is the result of inactivation of Ret, the missense mutations detected in the tyrosine kinase domain were demonstrated to result in a marked decrease of the kinase activity of Ret. However, the effects of missense mutations found in the extracellular domain remain unknown. We now report that five mutations in the extracellular domain examined inhibit transport of the Ret protein to the plasma membrane. As a consequence, they significantly decreased the transforming activity of Ret with multiple endocrine neoplasia (MEN) 2A mutation for which cell surface expression is required. Our results also demonstrated that long segment HSCR mutations more severely impair transport of Ret to the plasma membrane than a short segment HSCR mutation, suggesting that the level of its cell surface expression may correlate to the HSCR phenotype.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.