{"title":"利用磁共振成像研究胎儿和婴儿大脑髓磷脂发育的正常和异常模式。","authors":"W Grodd","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging allows a noninvasive assessment of myelination during normal brain maturation as well as the detection of genetically determined and acquired diseases that affect the synthesis and maintenance of myelin. If this high sensitivity of magnetic resonance imaging for white matter changes is completed by adequate clinical and biochemical information, a unique diagnostic tool is available to gain new insights in the formation of myelin and pathogenesis of myelin disorders.</p>","PeriodicalId":77089,"journal":{"name":"Current opinion in neurology and neurosurgery","volume":"6 3","pages":"393-7"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal and abnormal patterns of myelin development of the fetal and infantile human brain using magnetic resonance imaging.\",\"authors\":\"W Grodd\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic resonance imaging allows a noninvasive assessment of myelination during normal brain maturation as well as the detection of genetically determined and acquired diseases that affect the synthesis and maintenance of myelin. If this high sensitivity of magnetic resonance imaging for white matter changes is completed by adequate clinical and biochemical information, a unique diagnostic tool is available to gain new insights in the formation of myelin and pathogenesis of myelin disorders.</p>\",\"PeriodicalId\":77089,\"journal\":{\"name\":\"Current opinion in neurology and neurosurgery\",\"volume\":\"6 3\",\"pages\":\"393-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in neurology and neurosurgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in neurology and neurosurgery","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normal and abnormal patterns of myelin development of the fetal and infantile human brain using magnetic resonance imaging.
Magnetic resonance imaging allows a noninvasive assessment of myelination during normal brain maturation as well as the detection of genetically determined and acquired diseases that affect the synthesis and maintenance of myelin. If this high sensitivity of magnetic resonance imaging for white matter changes is completed by adequate clinical and biochemical information, a unique diagnostic tool is available to gain new insights in the formation of myelin and pathogenesis of myelin disorders.