R W Wrenn, C L Raeuber, L E Herman, W J Walton, T H Rosenquist
{"title":"转化生长因子- β:通过蛋白激酶C在培养胚胎血管平滑肌细胞中的信号转导。","authors":"R W Wrenn, C L Raeuber, L E Herman, W J Walton, T H Rosenquist","doi":"10.1007/BF02634374","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor-beta (TGF-beta), an ubiquitous regulatory peptide, has diverse effects on the differentiation and behavior of vascular smooth muscle cells (VSMC). However, the molecular mechanism through which TGF-alpha exerts its effects remains obscure. We investigated the phosphoinositide/protein kinase C [PKC] signaling pathway in the action of TGF-beta on cultured embryonic avian VSMC of differing lineage: a) thoracic aorta, derived from the neural crest; and b) abdominal aorta, derived from mesenchyme. The second messenger responsible for activation of PKC is sn-1,2-diacylglycerol [DAG]; TGF-beta increased the mass amounts of DAG in the membranes of neural crest-derived VSMC concurrent with translocation of PKC from the soluble to the membrane fraction, but TGF-beta had no effect on the DAG or PKC of mesenchyme-derived VSMC. TGF-beta potentiated the growth of platelet-derived growth factor (PDGF)-treated, neural crest-derived VSMC; but abolished PDGF-induced growth of mesenchymal cells. It is concluded that molecular and functional responses of VSMC to TGF-beta are heterogeneous and are functions of the embryonic lineage of the VSMC.</p>","PeriodicalId":77173,"journal":{"name":"In vitro cellular & developmental biology : journal of the Tissue Culture Association","volume":"29A 1","pages":"73-8"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02634374","citationCount":"8","resultStr":"{\"title\":\"Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells.\",\"authors\":\"R W Wrenn, C L Raeuber, L E Herman, W J Walton, T H Rosenquist\",\"doi\":\"10.1007/BF02634374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factor-beta (TGF-beta), an ubiquitous regulatory peptide, has diverse effects on the differentiation and behavior of vascular smooth muscle cells (VSMC). However, the molecular mechanism through which TGF-alpha exerts its effects remains obscure. We investigated the phosphoinositide/protein kinase C [PKC] signaling pathway in the action of TGF-beta on cultured embryonic avian VSMC of differing lineage: a) thoracic aorta, derived from the neural crest; and b) abdominal aorta, derived from mesenchyme. The second messenger responsible for activation of PKC is sn-1,2-diacylglycerol [DAG]; TGF-beta increased the mass amounts of DAG in the membranes of neural crest-derived VSMC concurrent with translocation of PKC from the soluble to the membrane fraction, but TGF-beta had no effect on the DAG or PKC of mesenchyme-derived VSMC. TGF-beta potentiated the growth of platelet-derived growth factor (PDGF)-treated, neural crest-derived VSMC; but abolished PDGF-induced growth of mesenchymal cells. It is concluded that molecular and functional responses of VSMC to TGF-beta are heterogeneous and are functions of the embryonic lineage of the VSMC.</p>\",\"PeriodicalId\":77173,\"journal\":{\"name\":\"In vitro cellular & developmental biology : journal of the Tissue Culture Association\",\"volume\":\"29A 1\",\"pages\":\"73-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02634374\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro cellular & developmental biology : journal of the Tissue Culture Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02634374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro cellular & developmental biology : journal of the Tissue Culture Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02634374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells.
Transforming growth factor-beta (TGF-beta), an ubiquitous regulatory peptide, has diverse effects on the differentiation and behavior of vascular smooth muscle cells (VSMC). However, the molecular mechanism through which TGF-alpha exerts its effects remains obscure. We investigated the phosphoinositide/protein kinase C [PKC] signaling pathway in the action of TGF-beta on cultured embryonic avian VSMC of differing lineage: a) thoracic aorta, derived from the neural crest; and b) abdominal aorta, derived from mesenchyme. The second messenger responsible for activation of PKC is sn-1,2-diacylglycerol [DAG]; TGF-beta increased the mass amounts of DAG in the membranes of neural crest-derived VSMC concurrent with translocation of PKC from the soluble to the membrane fraction, but TGF-beta had no effect on the DAG or PKC of mesenchyme-derived VSMC. TGF-beta potentiated the growth of platelet-derived growth factor (PDGF)-treated, neural crest-derived VSMC; but abolished PDGF-induced growth of mesenchymal cells. It is concluded that molecular and functional responses of VSMC to TGF-beta are heterogeneous and are functions of the embryonic lineage of the VSMC.