{"title":"不同麻醉方案对组织抗氧化酶活性的影响。","authors":"D V Godin, M E Garnett","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It has been suggested that oxidative processes are involved in a variety of pathological conditions, notably ischemia-reperfusion injury. Moreover, anesthetics appear to exert differential effects on the severity of such injury, these being unlikely wholly attributable to their differential effects on cardiovascular or microcirculatory status. It is possible that these variable effects of anesthetics on this type of injury may be due, at least in part, to changes in the production of free radicals and/or in their detoxification by endogenous antioxidant enzymes. We have attempted to explore the latter possibility by measuring activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase in normal heart tissue and red cells obtained from rats anesthetized using a variety of agents (CO2, halothane, pentobarbital or ether). For comparison, analyses were also performed on tissues from unanesthetized animals rendered unconscious by stunning prior to sacrifice. Results indicated that myocardial SOD activity was significantly greater in halothane-anesthetized as compared with CO2-anesthetized animals. Red cell SOD activities did not show such differences. However, red cell GPX activity was found to be greater in halothane-anesthetized than in pentobarbital-anesthetized rats. In general, however, antioxidant enzyme activities measured ex vivo were minimally affected by the use of anesthetics prior to euthanasia. Our findings, therefore, do not support the proposal that the influence of anesthetics on the course of ischemia-reperfusion injury involves effects at the level of enzymatic antioxidant components.</p>","PeriodicalId":21140,"journal":{"name":"Research communications in chemical pathology and pharmacology","volume":"83 1","pages":"93-101"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of various anesthetic regimens on tissue antioxidant enzyme activities.\",\"authors\":\"D V Godin, M E Garnett\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been suggested that oxidative processes are involved in a variety of pathological conditions, notably ischemia-reperfusion injury. Moreover, anesthetics appear to exert differential effects on the severity of such injury, these being unlikely wholly attributable to their differential effects on cardiovascular or microcirculatory status. It is possible that these variable effects of anesthetics on this type of injury may be due, at least in part, to changes in the production of free radicals and/or in their detoxification by endogenous antioxidant enzymes. We have attempted to explore the latter possibility by measuring activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase in normal heart tissue and red cells obtained from rats anesthetized using a variety of agents (CO2, halothane, pentobarbital or ether). For comparison, analyses were also performed on tissues from unanesthetized animals rendered unconscious by stunning prior to sacrifice. Results indicated that myocardial SOD activity was significantly greater in halothane-anesthetized as compared with CO2-anesthetized animals. Red cell SOD activities did not show such differences. However, red cell GPX activity was found to be greater in halothane-anesthetized than in pentobarbital-anesthetized rats. In general, however, antioxidant enzyme activities measured ex vivo were minimally affected by the use of anesthetics prior to euthanasia. Our findings, therefore, do not support the proposal that the influence of anesthetics on the course of ischemia-reperfusion injury involves effects at the level of enzymatic antioxidant components.</p>\",\"PeriodicalId\":21140,\"journal\":{\"name\":\"Research communications in chemical pathology and pharmacology\",\"volume\":\"83 1\",\"pages\":\"93-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research communications in chemical pathology and pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research communications in chemical pathology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of various anesthetic regimens on tissue antioxidant enzyme activities.
It has been suggested that oxidative processes are involved in a variety of pathological conditions, notably ischemia-reperfusion injury. Moreover, anesthetics appear to exert differential effects on the severity of such injury, these being unlikely wholly attributable to their differential effects on cardiovascular or microcirculatory status. It is possible that these variable effects of anesthetics on this type of injury may be due, at least in part, to changes in the production of free radicals and/or in their detoxification by endogenous antioxidant enzymes. We have attempted to explore the latter possibility by measuring activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase in normal heart tissue and red cells obtained from rats anesthetized using a variety of agents (CO2, halothane, pentobarbital or ether). For comparison, analyses were also performed on tissues from unanesthetized animals rendered unconscious by stunning prior to sacrifice. Results indicated that myocardial SOD activity was significantly greater in halothane-anesthetized as compared with CO2-anesthetized animals. Red cell SOD activities did not show such differences. However, red cell GPX activity was found to be greater in halothane-anesthetized than in pentobarbital-anesthetized rats. In general, however, antioxidant enzyme activities measured ex vivo were minimally affected by the use of anesthetics prior to euthanasia. Our findings, therefore, do not support the proposal that the influence of anesthetics on the course of ischemia-reperfusion injury involves effects at the level of enzymatic antioxidant components.