乳酸杆菌对人血小板的聚集作用。

D W Harty, M Patrikakis, E B Hume, H J Oakey, K W Knox
{"title":"乳酸杆菌对人血小板的聚集作用。","authors":"D W Harty, M Patrikakis, E B Hume, H J Oakey, K W Knox","doi":"10.1099/00221287-139-12-2945","DOIUrl":null,"url":null,"abstract":"The ability to aggregate human platelets was examined for five Lactobacillus rhamnosus strains and five Lactobacillus paracasei subsp. paracasei strains isolated from patients with infective endocarditis (IE), 25 laboratory isolates from the same two species, and 14 strains from five other oral species, namely Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus oris, Lactobacillus plantarum and Lactobacillus salivarius. Amongst the L. rhamnosus strains, platelets were aggregated by all five IE strains and 8/16 laboratory strains. For the L. paracasei subsp. paracasei strains, the respective numbers were 2/5 and 2/9. Aggregation also occurred with 11/14 strains of the other five species; each species was represented. The optimal ratio of bacteria to platelets for aggregation was approximately 1:1, and there was considerable variation in the lag phase that preceded aggregation, depending on the source of the platelets. Overall, the lag phase varied between 0.25 +/- 0.1 and 20.4 +/- 3.2 min and the percentage aggregation ranged between 70 +/- 2.6 and 104 +/- 13.5%. Confirmation that aggregation was being observed came from studies with five strains on the inhibitory effects of EDTA, dipyridamole, apyrase, imipramine, acetylsalicylic acid and quinacrine. Inhibition of aggregation by L. rhamnosus strains by the peptide arginine-glycine-aspartic acid-serine (RGDS) further indicated a role for fibronectin and/or fibrinogen. Pronase treatment of cells for 1 h and extraction of bacterial surface components with 0.1 M-Tris/HCl (pH 8.5) at 37 degrees C for 1 h stopped aggregation in 8/9 IE strains. Extracted surface proteins (200 micrograms) completely inhibited platelet aggregation by 8/9 of the homologous strains.(ABSTRACT TRUNCATED AT 250 WORDS)","PeriodicalId":15884,"journal":{"name":"Journal of general microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1099/00221287-139-12-2945","citationCount":"51","resultStr":"{\"title\":\"The aggregation of human platelets by Lactobacillus species.\",\"authors\":\"D W Harty, M Patrikakis, E B Hume, H J Oakey, K W Knox\",\"doi\":\"10.1099/00221287-139-12-2945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to aggregate human platelets was examined for five Lactobacillus rhamnosus strains and five Lactobacillus paracasei subsp. paracasei strains isolated from patients with infective endocarditis (IE), 25 laboratory isolates from the same two species, and 14 strains from five other oral species, namely Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus oris, Lactobacillus plantarum and Lactobacillus salivarius. Amongst the L. rhamnosus strains, platelets were aggregated by all five IE strains and 8/16 laboratory strains. For the L. paracasei subsp. paracasei strains, the respective numbers were 2/5 and 2/9. Aggregation also occurred with 11/14 strains of the other five species; each species was represented. The optimal ratio of bacteria to platelets for aggregation was approximately 1:1, and there was considerable variation in the lag phase that preceded aggregation, depending on the source of the platelets. Overall, the lag phase varied between 0.25 +/- 0.1 and 20.4 +/- 3.2 min and the percentage aggregation ranged between 70 +/- 2.6 and 104 +/- 13.5%. Confirmation that aggregation was being observed came from studies with five strains on the inhibitory effects of EDTA, dipyridamole, apyrase, imipramine, acetylsalicylic acid and quinacrine. Inhibition of aggregation by L. rhamnosus strains by the peptide arginine-glycine-aspartic acid-serine (RGDS) further indicated a role for fibronectin and/or fibrinogen. Pronase treatment of cells for 1 h and extraction of bacterial surface components with 0.1 M-Tris/HCl (pH 8.5) at 37 degrees C for 1 h stopped aggregation in 8/9 IE strains. Extracted surface proteins (200 micrograms) completely inhibited platelet aggregation by 8/9 of the homologous strains.(ABSTRACT TRUNCATED AT 250 WORDS)\",\"PeriodicalId\":15884,\"journal\":{\"name\":\"Journal of general microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1099/00221287-139-12-2945\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of general microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1099/00221287-139-12-2945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of general microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/00221287-139-12-2945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

研究了5株鼠李糖乳杆菌和5株副干酪乳杆菌对人血小板的聚集能力。感染性心内膜炎(IE)患者分离到副卡萨伊菌,同一两个菌种分离到25株实验室分离株,其他5个口腔菌种分离到14株,分别是嗜酸乳杆菌、发酵乳杆菌、口乳杆菌、植物乳杆菌和唾液乳杆菌。在鼠李糖乳杆菌菌株中,5株IE菌株和8/16株实验室菌株的血小板均聚集。对于副乳杆菌亚种。副卡萨伊菌株的数量分别为2/5和2/9。其余5种的11/14株也发生聚集;每个物种都有代表。细菌与血小板聚集的最佳比例约为1:1,并且在聚集之前的滞后期有相当大的变化,这取决于血小板的来源。总体而言,滞后期在0.25 +/- 0.1和20.4 +/- 3.2 min之间变化,百分比聚集在70 +/- 2.6和104 +/- 13.5%之间。5株菌株对EDTA、双嘧达莫、apyrase、丙咪嗪、乙酰水杨酸和quinacrine的抑制作用的研究证实了这种聚集现象。精氨酸-甘氨酸-天冬氨酸-丝氨酸(RGDS)肽对鼠李糖菌株聚集的抑制作用进一步表明其与纤维连接蛋白和/或纤维蛋白原有关。Pronase处理细胞1小时,并用0.1 M-Tris/HCl (pH 8.5)在37℃条件下提取细菌表面成分1小时,8/9株IE菌株的聚集停止。提取的表面蛋白(200微克)完全抑制了8/9的同源菌株的血小板聚集。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The aggregation of human platelets by Lactobacillus species.
The ability to aggregate human platelets was examined for five Lactobacillus rhamnosus strains and five Lactobacillus paracasei subsp. paracasei strains isolated from patients with infective endocarditis (IE), 25 laboratory isolates from the same two species, and 14 strains from five other oral species, namely Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus oris, Lactobacillus plantarum and Lactobacillus salivarius. Amongst the L. rhamnosus strains, platelets were aggregated by all five IE strains and 8/16 laboratory strains. For the L. paracasei subsp. paracasei strains, the respective numbers were 2/5 and 2/9. Aggregation also occurred with 11/14 strains of the other five species; each species was represented. The optimal ratio of bacteria to platelets for aggregation was approximately 1:1, and there was considerable variation in the lag phase that preceded aggregation, depending on the source of the platelets. Overall, the lag phase varied between 0.25 +/- 0.1 and 20.4 +/- 3.2 min and the percentage aggregation ranged between 70 +/- 2.6 and 104 +/- 13.5%. Confirmation that aggregation was being observed came from studies with five strains on the inhibitory effects of EDTA, dipyridamole, apyrase, imipramine, acetylsalicylic acid and quinacrine. Inhibition of aggregation by L. rhamnosus strains by the peptide arginine-glycine-aspartic acid-serine (RGDS) further indicated a role for fibronectin and/or fibrinogen. Pronase treatment of cells for 1 h and extraction of bacterial surface components with 0.1 M-Tris/HCl (pH 8.5) at 37 degrees C for 1 h stopped aggregation in 8/9 IE strains. Extracted surface proteins (200 micrograms) completely inhibited platelet aggregation by 8/9 of the homologous strains.(ABSTRACT TRUNCATED AT 250 WORDS)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信