3D打印聚合物复合材料制造可穿戴传感器:综述

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amr Osman , Jian Lu
{"title":"3D打印聚合物复合材料制造可穿戴传感器:综述","authors":"Amr Osman ,&nbsp;Jian Lu","doi":"10.1016/j.mser.2023.100734","DOIUrl":null,"url":null,"abstract":"<div><p>The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"154 ","pages":"Article 100734"},"PeriodicalIF":31.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"3D printing of polymer composites to fabricate wearable sensors: A comprehensive review\",\"authors\":\"Amr Osman ,&nbsp;Jian Lu\",\"doi\":\"10.1016/j.mser.2023.100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"154 \",\"pages\":\"Article 100734\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X23000207\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X23000207","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

可穿戴传感器在医疗保健系统、人体运动检测、机器人和人机交互等领域的应用引起了人们的极大关注。由于这些应用需要可拉伸、柔性和非侵入性的材料,聚合物复合材料现在处于研究的前沿,旨在制备创新的可穿戴传感器。三维(3D)打印技术可用于获得高度定制和可扩展的聚合物复合材料,以制造可穿戴传感器,这对于传统制造技术来说是一项具有挑战性的任务。本文综述了常用的导电纳米材料和3D打印技术在制备可穿戴设备中的应用前景。随后,讨论了3d打印可穿戴传感器的研究进展、传感机制和性能,如应变、压力、温度和湿度传感器。此外,还重点介绍了新型3d打印多功能传感器,如多向、多模态、自修复、自供电、原位打印和超声波传感器。阐明了今后研究发展面临的挑战和趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D printing of polymer composites to fabricate wearable sensors: A comprehensive review

The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信