Qigang Zhong , Xuechao Li, Haiming Zhang, Lifeng Chi
{"title":"非接触原子力显微镜:键成像及其他","authors":"Qigang Zhong , Xuechao Li, Haiming Zhang, Lifeng Chi","doi":"10.1016/j.surfrep.2020.100509","DOIUrl":null,"url":null,"abstract":"<div><p>It was a long-cherished dream for chemists to take a direct look at chemical bonding, a fundamental component of chemistry<span>. This dream was finally accomplished by the state-of-the-art noncontact atomic force microscopy<span><span> (NC-AFM) equipped with qPlus force sensors and carbon monoxide (CO) functionalized tips. The resolved interconnectivity between atoms and molecules in NC-AFM frequency shift images is interpreted as chemical bonding, providing essential knowledge of the bond length, </span>bond angle<span><span> and even bond order. The featured contrast of different chemical bonds can serve as fingerprints for further interpretation of chemical structures<span> toward unknown species synthesized on surfaces. This breakthrough enriches characterization tools for surface science<span> and brings our understanding of on-surface reactions to a new level. Beyond bond imaging, the application of NC-AFM has been extended to quantifying interatomic interactions, identifying three-dimensional nanostructures, manipulating molecules and reactions, as well as determining </span></span></span>molecular electronic<span><span> characteristics. Moreover, some recent efforts address the improvement of the usability and versatility of the bond-resolved NC-AFM technique, including high-resolution molecular investigation on bulk insulators, application-specific tip modification, stable bond imaging above </span>liquid helium temperature and autonomous experimentation implemented by artificial intelligence.</span></span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"75 4","pages":"Article 100509"},"PeriodicalIF":8.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2020.100509","citationCount":"18","resultStr":"{\"title\":\"Noncontact atomic force microscopy: Bond imaging and beyond\",\"authors\":\"Qigang Zhong , Xuechao Li, Haiming Zhang, Lifeng Chi\",\"doi\":\"10.1016/j.surfrep.2020.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It was a long-cherished dream for chemists to take a direct look at chemical bonding, a fundamental component of chemistry<span>. This dream was finally accomplished by the state-of-the-art noncontact atomic force microscopy<span><span> (NC-AFM) equipped with qPlus force sensors and carbon monoxide (CO) functionalized tips. The resolved interconnectivity between atoms and molecules in NC-AFM frequency shift images is interpreted as chemical bonding, providing essential knowledge of the bond length, </span>bond angle<span><span> and even bond order. The featured contrast of different chemical bonds can serve as fingerprints for further interpretation of chemical structures<span> toward unknown species synthesized on surfaces. This breakthrough enriches characterization tools for surface science<span> and brings our understanding of on-surface reactions to a new level. Beyond bond imaging, the application of NC-AFM has been extended to quantifying interatomic interactions, identifying three-dimensional nanostructures, manipulating molecules and reactions, as well as determining </span></span></span>molecular electronic<span><span> characteristics. Moreover, some recent efforts address the improvement of the usability and versatility of the bond-resolved NC-AFM technique, including high-resolution molecular investigation on bulk insulators, application-specific tip modification, stable bond imaging above </span>liquid helium temperature and autonomous experimentation implemented by artificial intelligence.</span></span></span></span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"75 4\",\"pages\":\"Article 100509\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2020.100509\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572920300303\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572920300303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Noncontact atomic force microscopy: Bond imaging and beyond
It was a long-cherished dream for chemists to take a direct look at chemical bonding, a fundamental component of chemistry. This dream was finally accomplished by the state-of-the-art noncontact atomic force microscopy (NC-AFM) equipped with qPlus force sensors and carbon monoxide (CO) functionalized tips. The resolved interconnectivity between atoms and molecules in NC-AFM frequency shift images is interpreted as chemical bonding, providing essential knowledge of the bond length, bond angle and even bond order. The featured contrast of different chemical bonds can serve as fingerprints for further interpretation of chemical structures toward unknown species synthesized on surfaces. This breakthrough enriches characterization tools for surface science and brings our understanding of on-surface reactions to a new level. Beyond bond imaging, the application of NC-AFM has been extended to quantifying interatomic interactions, identifying three-dimensional nanostructures, manipulating molecules and reactions, as well as determining molecular electronic characteristics. Moreover, some recent efforts address the improvement of the usability and versatility of the bond-resolved NC-AFM technique, including high-resolution molecular investigation on bulk insulators, application-specific tip modification, stable bond imaging above liquid helium temperature and autonomous experimentation implemented by artificial intelligence.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.