Wen-Jin Yin , Bo Wen , Chuanyao Zhou , Annabella Selloni , Li-Min Liu
{"title":"还原金红石和锐钛矿TiO2中的多余电子","authors":"Wen-Jin Yin , Bo Wen , Chuanyao Zhou , Annabella Selloni , Li-Min Liu","doi":"10.1016/j.surfrep.2018.02.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>As a prototypical photocatalyst, TiO</span><sub>2</sub><span> is a material of scientific and technological interest. In photocatalysis and other applications, TiO</span><sub>2</sub> is often reduced, behaving as an <em>n</em>-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO<sub>2</sub>. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO<sub>2</sub> focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO<sub>2</sub><span><span>, for intrinsic oxygen vacancy<span> and Ti interstitial defects, and for surface </span></span>hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"73 2","pages":"Pages 58-82"},"PeriodicalIF":8.2000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2018.02.003","citationCount":"87","resultStr":"{\"title\":\"Excess electrons in reduced rutile and anatase TiO2\",\"authors\":\"Wen-Jin Yin , Bo Wen , Chuanyao Zhou , Annabella Selloni , Li-Min Liu\",\"doi\":\"10.1016/j.surfrep.2018.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>As a prototypical photocatalyst, TiO</span><sub>2</sub><span> is a material of scientific and technological interest. In photocatalysis and other applications, TiO</span><sub>2</sub> is often reduced, behaving as an <em>n</em>-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO<sub>2</sub>. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO<sub>2</sub> focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO<sub>2</sub><span><span>, for intrinsic oxygen vacancy<span> and Ti interstitial defects, and for surface </span></span>hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.</span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"73 2\",\"pages\":\"Pages 58-82\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.surfrep.2018.02.003\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572918300128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572918300128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Excess electrons in reduced rutile and anatase TiO2
As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.